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1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop
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Abstract
FPGAs have enjoyed exponential growth of on-chip hard-
ware resources— reason to reinvestigate hardware implemen-
tations of functional languages. This paper presents Heron,
an FPGA-based special purpose processor core for pure, non-
strict functional languages.We co-design its language seman-
tics and parametrised design, gaining a high reductions-per-
cycle performance metric. The Heron core is energy efficient,
performing up to six times as many reductions per cycle as
GHC. Despite its infancy, a 193 MHz Heron core outperforms
wall-clock time for a mid-range Intel i3 1.9 GHz mobile CPU
for 5 of these benchmarks and is competitive with an Alder
Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
IFL 2023, August 29–31, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9831-X/XX/XX.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging

1977

1991

2012

2024

1960

1990

2020



Software for Concurrent GC
Hardware for FP

Recursive Functions of Symbolic Expressions

and Their Computation by Machine, Part I

John McCarthy, Massachusetts Institute of Technology, Cambridge, Mass. ∗

April 1960

1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.

∗Putting this paper in LATEXpartly supported by ARPA (ONR) grant N00014-94-1-0775
to Stanford University where John McCarthy has been since 1962. Copied with minor nota-
tional changes from CACM, April 1960. If you want the exact typography, look there. Cur-
rent address, John McCarthy, Computer Science Department, Stanford, CA 94305, (email:
jmc@cs.stanford.edu), (URL: http://www-formal.stanford.edu/jmc/ )

1

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari
Well-Typed LLP
London, U.K.

ben@well-typed.com

Laura Dietz
University of New Hampshire

Durham, NH, U.S.A.
dietz@cs.unh.edu

Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
OptimizedGarbage Collector for Functional Programming Languages.
In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management (ISMM ’20), June 16, 2020, London, UK.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381898.
3397214

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7566-5/20/06…$15.00
https://doi.org/10.1145/3381898.3397214

1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.

CCS Concepts: • Hardware → Hardware accelerators; •
Computer systems organization → Architectures; Mul-
ticore architectures.
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level
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CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging
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1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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BWMa concrete machine for graph reductionLennart AugustssonDepartment of Computer SciencesChalmers University of TechnologyS-412 96 G�oteborg, SwedenEmail: augustss@cs.chalmers.seAbstractThis paper describes a computer architecture for executionof lazy functional languages. The architecture is based ongraph reduction of the �-calculus, but is extended to handlereal programs. It is not another abstract machine, but in-stead a proposal for how actual hardware could be designed.The machine uses very large memory words. This makes itpossible for a single instruction to do a lot (akin to VLIWand superscalar machines), and also to construct and scru-tinize large objects with few memory operations. Since con-struction of suspensions is a very common operation duringgraph reduction this is bene�cial.The machine is built around a stack and a multiplexor,not around an arithmetic unit as most stock processors. Thereason for this is that this machine is not aimed at numbercrunching, but at manipulating data.As with modern RISC processors the interaction betweenthe compiler and the processor is crucial; the \hardware" hasseveral shortcomings that the compiler has to know aboutand handle at compile time.1 IntroductionIn the seventies and early eighties, before e�cient compil-ers for functional languages existed, it was believed thatspecial purpose hardware was needed to get e�cient execu-tion of functional languages. These were also the days whenspecial purpose processors were considered a \good thing".With the advent of compilers for functional languages it wasrealized that relatively e�cient execution was possible onstock hardware. Nowadays special purpose processors areno longer held in such high esteem; RISC, [Pat85, HP90], isthe buzz-word of today's computer design.In this paper we will try to take a fresh look at designinga special purpose processor for lazy functional languages.Today's compilers with sophisticated analyses, strictnessanalysis, [Myc82], in particular, can rival traditional lan-guages for programs where most of the computation are withnumbers (and other at domains).On the other hand, when the data structures involvedare trees or lists it is a di�erent story. Here the strictnessanalyzers are no longer as powerful, and even if all strictness

information could be deduced it is not clear how it can beused. One reason pure functional languages do worse thenimpure (i.e. those with updating) is that instead of updatingthey have to copy data structures. For lazy languages theproblem is even worse since instead of computing a value asuspension of the computation often has to be created, tobe scrutinized later on.The main reason these things make programs run sloweris that they increase the number of memory references. Themachine presented in this paper has its origin in a single ob-servation: the speed of functional programs (on traditionalarchitectures) are often limited by the memory bandwidth.There are two ways of increasing memory bandwidth: re-duce memory cycle time or increase the width of the mem-ory. Since the �rst is decided by the available technology wewill instead increase the second.It has long been claimed that functional languages haveinherent parallelism readily available which gives them greatpotential for multiprocessors. In an expression such as \fe1 e2" , both \e1" and \e2" can be evaluated simultane-ously. This is not the parallelism that we will take advantageof, but it is related to it.If the expression \f e1 e2" is going to be evaluated ina lazy language both \e1" and \e2" have to be suspendedand representations for them (e.g. closures) must be cre-ated in memory (assuming there is no strictness analysis).The parallelism we are going to take advantage of is thatthere are no real data dependencies during the operationsthat create \e1" and \e2" so these operations can alsoin principle happen simultaneously. This parallelism is onthe same level as pipelining in ordinary processors, i.e. somekind of micro-parallelism. It is very much akin the VLIW[HP90] machines where Very Long Instruction Words areused to do several operations in parallel. The VLIW ma-chines designed so far have been geared towards scienti�ccomputing, you could say that our design, the BWM (BigWord Machine) is a VLIW for lazy functional languages.To make it possible to construct a large object, like a clo-sure, in a single operation requires that we know everythingthat has to be done without doing more than one instruc-tion fetch { hence we must have wide instructions. But wemust also be able to write the constructed object in a singleoperation { hence we need wide data words as well.2 Basic machineryThe BWM is designed to execute the �-calculus. In manyways it resembles the G-machine [Joh87] and TIM [FW87],
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Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop
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Abstract
FPGAs have enjoyed exponential growth of on-chip hard-
ware resources— reason to reinvestigate hardware implemen-
tations of functional languages. This paper presents Heron,
an FPGA-based special purpose processor core for pure, non-
strict functional languages.We co-design its language seman-
tics and parametrised design, gaining a high reductions-per-
cycle performance metric. The Heron core is energy efficient,
performing up to six times as many reductions per cycle as
GHC. Despite its infancy, a 193 MHz Heron core outperforms
wall-clock time for a mid-range Intel i3 1.9 GHz mobile CPU
for 5 of these benchmarks and is competitive with an Alder
Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.

CCS Concepts: • Hardware → Hardware accelerators; •
Computer systems organization → Architectures; Mul-
ticore architectures.
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level
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CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging
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1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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BWMa concrete machine for graph reductionLennart AugustssonDepartment of Computer SciencesChalmers University of TechnologyS-412 96 G�oteborg, SwedenEmail: augustss@cs.chalmers.seAbstractThis paper describes a computer architecture for executionof lazy functional languages. The architecture is based ongraph reduction of the �-calculus, but is extended to handlereal programs. It is not another abstract machine, but in-stead a proposal for how actual hardware could be designed.The machine uses very large memory words. This makes itpossible for a single instruction to do a lot (akin to VLIWand superscalar machines), and also to construct and scru-tinize large objects with few memory operations. Since con-struction of suspensions is a very common operation duringgraph reduction this is bene�cial.The machine is built around a stack and a multiplexor,not around an arithmetic unit as most stock processors. Thereason for this is that this machine is not aimed at numbercrunching, but at manipulating data.As with modern RISC processors the interaction betweenthe compiler and the processor is crucial; the \hardware" hasseveral shortcomings that the compiler has to know aboutand handle at compile time.1 IntroductionIn the seventies and early eighties, before e�cient compil-ers for functional languages existed, it was believed thatspecial purpose hardware was needed to get e�cient execu-tion of functional languages. These were also the days whenspecial purpose processors were considered a \good thing".With the advent of compilers for functional languages it wasrealized that relatively e�cient execution was possible onstock hardware. Nowadays special purpose processors areno longer held in such high esteem; RISC, [Pat85, HP90], isthe buzz-word of today's computer design.In this paper we will try to take a fresh look at designinga special purpose processor for lazy functional languages.Today's compilers with sophisticated analyses, strictnessanalysis, [Myc82], in particular, can rival traditional lan-guages for programs where most of the computation are withnumbers (and other at domains).On the other hand, when the data structures involvedare trees or lists it is a di�erent story. Here the strictnessanalyzers are no longer as powerful, and even if all strictness

information could be deduced it is not clear how it can beused. One reason pure functional languages do worse thenimpure (i.e. those with updating) is that instead of updatingthey have to copy data structures. For lazy languages theproblem is even worse since instead of computing a value asuspension of the computation often has to be created, tobe scrutinized later on.The main reason these things make programs run sloweris that they increase the number of memory references. Themachine presented in this paper has its origin in a single ob-servation: the speed of functional programs (on traditionalarchitectures) are often limited by the memory bandwidth.There are two ways of increasing memory bandwidth: re-duce memory cycle time or increase the width of the mem-ory. Since the �rst is decided by the available technology wewill instead increase the second.It has long been claimed that functional languages haveinherent parallelism readily available which gives them greatpotential for multiprocessors. In an expression such as \fe1 e2" , both \e1" and \e2" can be evaluated simultane-ously. This is not the parallelism that we will take advantageof, but it is related to it.If the expression \f e1 e2" is going to be evaluated ina lazy language both \e1" and \e2" have to be suspendedand representations for them (e.g. closures) must be cre-ated in memory (assuming there is no strictness analysis).The parallelism we are going to take advantage of is thatthere are no real data dependencies during the operationsthat create \e1" and \e2" so these operations can alsoin principle happen simultaneously. This parallelism is onthe same level as pipelining in ordinary processors, i.e. somekind of micro-parallelism. It is very much akin the VLIW[HP90] machines where Very Long Instruction Words areused to do several operations in parallel. The VLIW ma-chines designed so far have been geared towards scienti�ccomputing, you could say that our design, the BWM (BigWord Machine) is a VLIW for lazy functional languages.To make it possible to construct a large object, like a clo-sure, in a single operation requires that we know everythingthat has to be done without doing more than one instruc-tion fetch { hence we must have wide instructions. But wemust also be able to write the constructed object in a singleoperation { hence we need wide data words as well.2 Basic machineryThe BWM is designed to execute the �-calculus. In manyways it resembles the G-machine [Joh87] and TIM [FW87],
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Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop
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Abstract
FPGAs have enjoyed exponential growth of on-chip hard-
ware resources— reason to reinvestigate hardware implemen-
tations of functional languages. This paper presents Heron,
an FPGA-based special purpose processor core for pure, non-
strict functional languages.We co-design its language seman-
tics and parametrised design, gaining a high reductions-per-
cycle performance metric. The Heron core is energy efficient,
performing up to six times as many reductions per cycle as
GHC. Despite its infancy, a 193 MHz Heron core outperforms
wall-clock time for a mid-range Intel i3 1.9 GHz mobile CPU
for 5 of these benchmarks and is competitive with an Alder
Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.

CCS Concepts: • Hardware → Hardware accelerators; •
Computer systems organization → Architectures; Mul-
ticore architectures.
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level
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CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging
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Mean 0.6 hand-reductions per cycle

x5 better than GHC* per cycle
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1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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BWMa concrete machine for graph reductionLennart AugustssonDepartment of Computer SciencesChalmers University of TechnologyS-412 96 G�oteborg, SwedenEmail: augustss@cs.chalmers.seAbstractThis paper describes a computer architecture for executionof lazy functional languages. The architecture is based ongraph reduction of the �-calculus, but is extended to handlereal programs. It is not another abstract machine, but in-stead a proposal for how actual hardware could be designed.The machine uses very large memory words. This makes itpossible for a single instruction to do a lot (akin to VLIWand superscalar machines), and also to construct and scru-tinize large objects with few memory operations. Since con-struction of suspensions is a very common operation duringgraph reduction this is bene�cial.The machine is built around a stack and a multiplexor,not around an arithmetic unit as most stock processors. Thereason for this is that this machine is not aimed at numbercrunching, but at manipulating data.As with modern RISC processors the interaction betweenthe compiler and the processor is crucial; the \hardware" hasseveral shortcomings that the compiler has to know aboutand handle at compile time.1 IntroductionIn the seventies and early eighties, before e�cient compil-ers for functional languages existed, it was believed thatspecial purpose hardware was needed to get e�cient execu-tion of functional languages. These were also the days whenspecial purpose processors were considered a \good thing".With the advent of compilers for functional languages it wasrealized that relatively e�cient execution was possible onstock hardware. Nowadays special purpose processors areno longer held in such high esteem; RISC, [Pat85, HP90], isthe buzz-word of today's computer design.In this paper we will try to take a fresh look at designinga special purpose processor for lazy functional languages.Today's compilers with sophisticated analyses, strictnessanalysis, [Myc82], in particular, can rival traditional lan-guages for programs where most of the computation are withnumbers (and other at domains).On the other hand, when the data structures involvedare trees or lists it is a di�erent story. Here the strictnessanalyzers are no longer as powerful, and even if all strictness

information could be deduced it is not clear how it can beused. One reason pure functional languages do worse thenimpure (i.e. those with updating) is that instead of updatingthey have to copy data structures. For lazy languages theproblem is even worse since instead of computing a value asuspension of the computation often has to be created, tobe scrutinized later on.The main reason these things make programs run sloweris that they increase the number of memory references. Themachine presented in this paper has its origin in a single ob-servation: the speed of functional programs (on traditionalarchitectures) are often limited by the memory bandwidth.There are two ways of increasing memory bandwidth: re-duce memory cycle time or increase the width of the mem-ory. Since the �rst is decided by the available technology wewill instead increase the second.It has long been claimed that functional languages haveinherent parallelism readily available which gives them greatpotential for multiprocessors. In an expression such as \fe1 e2" , both \e1" and \e2" can be evaluated simultane-ously. This is not the parallelism that we will take advantageof, but it is related to it.If the expression \f e1 e2" is going to be evaluated ina lazy language both \e1" and \e2" have to be suspendedand representations for them (e.g. closures) must be cre-ated in memory (assuming there is no strictness analysis).The parallelism we are going to take advantage of is thatthere are no real data dependencies during the operationsthat create \e1" and \e2" so these operations can alsoin principle happen simultaneously. This parallelism is onthe same level as pipelining in ordinary processors, i.e. somekind of micro-parallelism. It is very much akin the VLIW[HP90] machines where Very Long Instruction Words areused to do several operations in parallel. The VLIW ma-chines designed so far have been geared towards scienti�ccomputing, you could say that our design, the BWM (BigWord Machine) is a VLIW for lazy functional languages.To make it possible to construct a large object, like a clo-sure, in a single operation requires that we know everythingthat has to be done without doing more than one instruc-tion fetch { hence we must have wide instructions. But wemust also be able to write the constructed object in a singleoperation { hence we need wide data words as well.2 Basic machineryThe BWM is designed to execute the �-calculus. In manyways it resembles the G-machine [Joh87] and TIM [FW87],
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Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop
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Abstract
FPGAs have enjoyed exponential growth of on-chip hard-
ware resources— reason to reinvestigate hardware implemen-
tations of functional languages. This paper presents Heron,
an FPGA-based special purpose processor core for pure, non-
strict functional languages.We co-design its language seman-
tics and parametrised design, gaining a high reductions-per-
cycle performance metric. The Heron core is energy efficient,
performing up to six times as many reductions per cycle as
GHC. Despite its infancy, a 193 MHz Heron core outperforms
wall-clock time for a mid-range Intel i3 1.9 GHz mobile CPU
for 5 of these benchmarks and is competitive with an Alder
Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.

CCS Concepts: • Hardware → Hardware accelerators; •
Computer systems organization → Architectures; Mul-
ticore architectures.
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level
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CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging
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x5 better than GHC* per cycle

...but a tiny Heron is <200 MHz



Software for Concurrent GC
Hardware for FP

Recursive Functions of Symbolic Expressions
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1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop
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Abstract
FPGAs have enjoyed exponential growth of on-chip hard-
ware resources— reason to reinvestigate hardware implemen-
tations of functional languages. This paper presents Heron,
an FPGA-based special purpose processor core for pure, non-
strict functional languages.We co-design its language seman-
tics and parametrised design, gaining a high reductions-per-
cycle performance metric. The Heron core is energy efficient,
performing up to six times as many reductions per cycle as
GHC. Despite its infancy, a 193 MHz Heron core outperforms
wall-clock time for a mid-range Intel i3 1.9 GHz mobile CPU
for 5 of these benchmarks and is competitive with an Alder
Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.

CCS Concepts: • Hardware → Hardware accelerators; •
Computer systems organization → Architectures; Mul-
ticore architectures.
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level
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CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging
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1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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information could be deduced it is not clear how it can beused. One reason pure functional languages do worse thenimpure (i.e. those with updating) is that instead of updatingthey have to copy data structures. For lazy languages theproblem is even worse since instead of computing a value asuspension of the computation often has to be created, tobe scrutinized later on.The main reason these things make programs run sloweris that they increase the number of memory references. Themachine presented in this paper has its origin in a single ob-servation: the speed of functional programs (on traditionalarchitectures) are often limited by the memory bandwidth.There are two ways of increasing memory bandwidth: re-duce memory cycle time or increase the width of the mem-ory. Since the �rst is decided by the available technology wewill instead increase the second.It has long been claimed that functional languages haveinherent parallelism readily available which gives them greatpotential for multiprocessors. In an expression such as \fe1 e2" , both \e1" and \e2" can be evaluated simultane-ously. This is not the parallelism that we will take advantageof, but it is related to it.If the expression \f e1 e2" is going to be evaluated ina lazy language both \e1" and \e2" have to be suspendedand representations for them (e.g. closures) must be cre-ated in memory (assuming there is no strictness analysis).The parallelism we are going to take advantage of is thatthere are no real data dependencies during the operationsthat create \e1" and \e2" so these operations can alsoin principle happen simultaneously. This parallelism is onthe same level as pipelining in ordinary processors, i.e. somekind of micro-parallelism. It is very much akin the VLIW[HP90] machines where Very Long Instruction Words areused to do several operations in parallel. The VLIW ma-chines designed so far have been geared towards scienti�ccomputing, you could say that our design, the BWM (BigWord Machine) is a VLIW for lazy functional languages.To make it possible to construct a large object, like a clo-sure, in a single operation requires that we know everythingthat has to be done without doing more than one instruc-tion fetch { hence we must have wide instructions. But wemust also be able to write the constructed object in a singleoperation { hence we need wide data words as well.2 Basic machineryThe BWM is designed to execute the �-calculus. In manyways it resembles the G-machine [Joh87] and TIM [FW87],
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Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop
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Abstract
FPGAs have enjoyed exponential growth of on-chip hard-
ware resources— reason to reinvestigate hardware implemen-
tations of functional languages. This paper presents Heron,
an FPGA-based special purpose processor core for pure, non-
strict functional languages.We co-design its language seman-
tics and parametrised design, gaining a high reductions-per-
cycle performance metric. The Heron core is energy efficient,
performing up to six times as many reductions per cycle as
GHC. Despite its infancy, a 193 MHz Heron core outperforms
wall-clock time for a mid-range Intel i3 1.9 GHz mobile CPU
for 5 of these benchmarks and is competitive with an Alder
Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.
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Computer systems organization → Architectures; Mul-
ticore architectures.
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level
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CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging
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1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.I.T. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker, whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense” in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative
sentences so that the Advice Taker system could make deductions.

In the course of its development the LISP system went through several
stages of simplification and eventually came to be based on a scheme for rep-
resenting the partial recursive functions of a certain class of symbolic expres-
sions. This representation is independent of the IBM 704 computer, or of any
other electronic computer, and it now seems expedient to expound the system
by starting with the class of expressions called S-expressions and the functions
called S-functions.

∗Putting this paper in LATEXpartly supported by ARPA (ONR) grant N00014-94-1-0775
to Stanford University where John McCarthy has been since 1962. Copied with minor nota-
tional changes from CACM, April 1960. If you want the exact typography, look there. Cur-
rent address, John McCarthy, Computer Science Department, Stanford, CA 94305, (email:
jmc@cs.stanford.edu), (URL: http://www-formal.stanford.edu/jmc/ )
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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BWMa concrete machine for graph reductionLennart AugustssonDepartment of Computer SciencesChalmers University of TechnologyS-412 96 G�oteborg, SwedenEmail: augustss@cs.chalmers.seAbstractThis paper describes a computer architecture for executionof lazy functional languages. The architecture is based ongraph reduction of the �-calculus, but is extended to handlereal programs. It is not another abstract machine, but in-stead a proposal for how actual hardware could be designed.The machine uses very large memory words. This makes itpossible for a single instruction to do a lot (akin to VLIWand superscalar machines), and also to construct and scru-tinize large objects with few memory operations. Since con-struction of suspensions is a very common operation duringgraph reduction this is bene�cial.The machine is built around a stack and a multiplexor,not around an arithmetic unit as most stock processors. Thereason for this is that this machine is not aimed at numbercrunching, but at manipulating data.As with modern RISC processors the interaction betweenthe compiler and the processor is crucial; the \hardware" hasseveral shortcomings that the compiler has to know aboutand handle at compile time.1 IntroductionIn the seventies and early eighties, before e�cient compil-ers for functional languages existed, it was believed thatspecial purpose hardware was needed to get e�cient execu-tion of functional languages. These were also the days whenspecial purpose processors were considered a \good thing".With the advent of compilers for functional languages it wasrealized that relatively e�cient execution was possible onstock hardware. Nowadays special purpose processors areno longer held in such high esteem; RISC, [Pat85, HP90], isthe buzz-word of today's computer design.In this paper we will try to take a fresh look at designinga special purpose processor for lazy functional languages.Today's compilers with sophisticated analyses, strictnessanalysis, [Myc82], in particular, can rival traditional lan-guages for programs where most of the computation are withnumbers (and other at domains).On the other hand, when the data structures involvedare trees or lists it is a di�erent story. Here the strictnessanalyzers are no longer as powerful, and even if all strictness

information could be deduced it is not clear how it can beused. One reason pure functional languages do worse thenimpure (i.e. those with updating) is that instead of updatingthey have to copy data structures. For lazy languages theproblem is even worse since instead of computing a value asuspension of the computation often has to be created, tobe scrutinized later on.The main reason these things make programs run sloweris that they increase the number of memory references. Themachine presented in this paper has its origin in a single ob-servation: the speed of functional programs (on traditionalarchitectures) are often limited by the memory bandwidth.There are two ways of increasing memory bandwidth: re-duce memory cycle time or increase the width of the mem-ory. Since the �rst is decided by the available technology wewill instead increase the second.It has long been claimed that functional languages haveinherent parallelism readily available which gives them greatpotential for multiprocessors. In an expression such as \fe1 e2" , both \e1" and \e2" can be evaluated simultane-ously. This is not the parallelism that we will take advantageof, but it is related to it.If the expression \f e1 e2" is going to be evaluated ina lazy language both \e1" and \e2" have to be suspendedand representations for them (e.g. closures) must be cre-ated in memory (assuming there is no strictness analysis).The parallelism we are going to take advantage of is thatthere are no real data dependencies during the operationsthat create \e1" and \e2" so these operations can alsoin principle happen simultaneously. This parallelism is onthe same level as pipelining in ordinary processors, i.e. somekind of micro-parallelism. It is very much akin the VLIW[HP90] machines where Very Long Instruction Words areused to do several operations in parallel. The VLIW ma-chines designed so far have been geared towards scienti�ccomputing, you could say that our design, the BWM (BigWord Machine) is a VLIW for lazy functional languages.To make it possible to construct a large object, like a clo-sure, in a single operation requires that we know everythingthat has to be done without doing more than one instruc-tion fetch { hence we must have wide instructions. But wemust also be able to write the constructed object in a singleoperation { hence we need wide data words as well.2 Basic machineryThe BWM is designed to execute the �-calculus. In manyways it resembles the G-machine [Joh87] and TIM [FW87],
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The Reduceron reconfigured and re-evaluated
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Abstract

A new version of a special-purpose processor for running lazy functional programs is

presented. This processor – the Reduceron – exploits parallel memories and dynamic analyses

to increase evaluation speed, and is implemented using reconfigurable hardware. Compared

to a more conventional functional language implementation targeting a standard RISC

processor running on the same reconfigurable hardware, the Reduceron offers a significant

improvement in run-time performance.

1 Introduction

Efficient evaluation of high-level functional programs on conventional computers is

a big challenge. Sophisticated techniques are needed to exploit architectural features

designed for low-level imperative execution. Furthermore, conventional computers

have limitations when it comes to running functional programs. For example,

memory bandwidth is limited to serial communication in small units. Evaluators

based on graph reduction perform intensive construction and deconstruction of

expressions in memory. Each such operation requires sequential execution of many

machine instructions, not because of any inherent data dependencies, but because

of architectural constraints in conventional computers.

All this motivates the idea of computers specially designed to meet the needs

of high-level functional languages – much as GPUs are designed to meet needs

in graphics. By providing a minimal set of features tailored to the execution of

functional programs, such a custom computer could be not only fast but simple, with

benefits such as fuller verification and lower energy consumption. This is not a new

idea. In the 1980s and 1990s there was a 15-year ACM conference series Functional

Programming Languages and Computer Architecture. In separate initiatives, there

was an entire workshop concerned with graph-reduction machines alone (Fasel &

Keller, 1987), and a major computer manufacturer built a graph-reduction prototype

(Scheevel, 1986). But the process of constructing exotic new hardware was slow and

uncertain. With major advances in compilation for ever bigger, faster and cheaper

mass-market machines, the idea of specialised hardware for functional languages

went out of fashion.

Reconfigurable hardware. Today, the situation is quite different. Field-programmable

gate arrays (FPGAs) have greatly reduced the effort and expertise needed to develop

https://doi.org/10.1017/S0956796812000214 Published online by Cambridge University Press
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Abstract
FPGAs have enjoyed exponential growth of on-chip hard-
ware resources— reason to reinvestigate hardware implemen-
tations of functional languages. This paper presents Heron,
an FPGA-based special purpose processor core for pure, non-
strict functional languages.We co-design its language seman-
tics and parametrised design, gaining a high reductions-per-
cycle performance metric. The Heron core is energy efficient,
performing up to six times as many reductions per cycle as
GHC. Despite its infancy, a 193 MHz Heron core outperforms
wall-clock time for a mid-range Intel i3 1.9 GHz mobile CPU
for 5 of these benchmarks and is competitive with an Alder
Lake Intel i7 CPU. Its performance-per-Watt shows that the
Heron core is a compelling solution for embedded applica-
tions. The simplicity of Heron’s design results in just 2%
FPGA resource usage, paving the way for future single-chip
parallelism, further improving absolute performance.

CCS Concepts: • Hardware → Hardware accelerators; •
Computer systems organization → Architectures; Mul-
ticore architectures.

Keywords: hardware accelerators, functional languages, graph
reduction, FPGAs
ACM Reference Format:
Craig Ramsay and Robert Stewart. 2023. Heron: Modern Hardware
Graph Reduction. In Proceedings of IFL 2023. ACM, New York, NY,
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1 Introduction
Functional language implementations overwhelmingly tar-
get fixed CPU architectures. Stagnating clock frequencies
in the mid 2000s sparked research into alternative speedup
techniques such as exploiting parallelism, locality, and com-
piler heuristics. The semantic gap between functional lan-
guages and CPU assembly languages imposes limits on what
these techniques can achieve. The conceptual mismatch be-
tween high-level functional execution models and low-level

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
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ACM ISBN 978-1-4503-9831-X/XX/XX.
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CPU instruction sets necessitates compiler transformations
(Section 2.2). Continued exponential growth of FPGA logic
density, including wide memories with multiple independent
ports, rejuvenates 1980s questions about efficient functional
language implementations using custom hardware. We ar-
gue that co-designing language semantics and hardware closer
to functional execution models will produce more performant
systems versus general purpose CPUs. We believe that co-
designing graph reduction hardware architectures as custom
logic enables three avenues for substantial progress:

1. Low-level parallelism within single 𝛽-reductions in
the λ-calculus — not easily exploited on conventional
CPUs due to the memory bottleneck caused by alloca-
tions for immutable data structures and thunks [1, 14].

2. Embedding runtime system tasks (e.g. garbage col-
lection) as hardware units, running concurrently to
reduction. More useful work is performed per cycle.

3. Exploiting the purity of functional languages by safely
executing multiple reductions simultaneously.

Benefits 1 and 2 both significantly cut the number of re-
quired clock cycles, reducing energy consumption for carbon-
efficient computing. This paper focuses on the first idea: the
design of a single, sequential reduction core with good low-
level parallelism. We hope to address benefits 2 and 3 in
immediate future work. The contributions of this paper are:

• The co-design of Heron’s native language and custom
hardware architecture (Section 2).

• Three optimisations to Heron’s language semantics
resulting in decreases of 5.6% to clock cycles, 6.3% to
heap allocations, and 22% to code size (ignoring posi-
tive outliers). Optimising Heron for a modern FPGA
almost doubles the clock frequency versus a baseline
Reduceron processor[13] and requires 1.88% of hard-
ware resources versus 90% for Reduceron an older
generation FPGA (Section 3).

• An evaluation of Heron’s space and time performance
trade-offs, and time and power performance compar-
isons against GHC running on embedded, desktop and
high performance CPUs (Section 4).

2 Graph Reduction Techniques
Graph reduction implements lazy evaluation, where function
arguments are not evaluated before the function body. There
is a spectrum of graph reduction implementations, ranging

1977

1991

2012

2024

1960

1990

2020

Key Observation:

Stock CPUs struggle with sequentialised write-barriers

(trades-off GC latency for throughput)

Custom hardware + read-first memories grants us both



Cloaca

noun [ C ]

/kloh-ah-kuh/

The system responsible for all

the waste generated by a heron



Tracing example



Stack

(graph roots)
Heap



Stack

(graph roots)
Heap

Root ID



Stack

(graph roots)
Heap

Marking



Stack

(graph roots)
Heap

Marking



Stack

(graph roots)
Heap

Sweeping



Stack

(graph roots)
Heap

Sweeping



Stack

(graph roots)
Heap

Sweeping



Stack

(graph roots)
Heap

Sweeping



Stack

(graph roots)
Heap

Sweeping



Challenges for concurrent software

implementation?

Expect 21% median slowdown for nofib!



1) Allocation depends on GC state

Stop-the-world GC

Function alloc (app):

heap[hp]←− app

hp++

vs Concurrent GC

Function alloc (app):

if allocBarrier(gcPhase, hp)

then
tag hp as Marked

else
tag hp as Unmarked

heap[hp]←− app

hp++



2) Non-moving GC needs complex allocation

Stop-the-world GC

Function alloc (app):

heap[hp]←− app

hp++

vs Concurrent GC

Function alloc (app):
a←− pop from freelist

if allocBarrier(gcPhase, a)

then
tag a as Marked

else
tag a as Unmarked

heap[a]←− app



3) Prevent graph updates from destroying edges

Stop-the-world GC

Function update (nf, a):

heap[a]←− nf

vs Concurrent GC

Function update (nf, a):

if updateBarrier(gcPhase) then

x←− heap[a]

forall y in x’s child pointers do
remember y for marking

heap[a]←− nf



Additional hardware-enabled optimisations



Heron’s existing dynamic update avoidance system...

data Atom

= ...

| Var Shared Int

| Arg Shared Int

...

Function unwind (a, shared):
...

...

...

if shared and not NF then
push a onto update stack

if not shared then
dealloc a

... is just one-bit reference counting with a hat on.
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Architecture
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data GC Node

= FreeList Addr

| WorkList Addr

| Marked

| Unmarked

write a x = do

y <- readMem a

writeMem a x

pure y
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Results



Peak GHC working set (KB) GHC Allocations (MB) LoC

Adjoxo 47 301 72

Braun 46 0 26

Cichelli 52 41 123

Clausify 77 364 69

Countdown 46 54 62

Knuthbendix 105 54 324

Mate 137 430 293

Mss 46 359 13

Ordlist 46 984 28

Permsort 46 2320 10

Queens 55 1038 25

Queens2 47 1084 20

Sumpuz 48 1293 72

Taut 47 236 37

While 46 264 89



Peak GHC working set (KB) GHC Allocations (MB) LoC

Adjoxo 47 301 72

Braun 46 0 26

Cichelli 52 41 123

Clausify 77 364 69

Countdown 46 54 62

Knuthbendix 105 54 324

Mate 137 430 293

Mss 46 359 13

Ordlist 46 984 28

Permsort 46 2320 10

Queens 55 1038 25

Queens2 47 1084 20

Sumpuz 48 1293 72

Taut 47 236 37

While 46 264 89



Peak GHC working set (KB) GHC Allocations (MB) LoC

Adjoxo 47 301 72

Braun 46 0 26

Cichelli 52 41 123

Clausify 77 364 69

Countdown 46 54 62

Knuthbendix 105 54 324

Mate 137 430 293

Mss 46 359 13

Ordlist 46 984 28

Permsort 46 2320 10

Queens 55 1038 25

Queens2 47 1084 20

Sumpuz 48 1293 72

Taut 47 236 37

While 46 264 89



GC worst-case pause
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GC wall-clock overhead
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Concurrent tracing GC→ high throughput and low latency?

Stock processors + software struggle to maintain throughput.

Write-barriers and friends are hard.

Custom hardware with dual-port read-first memories

can handle them in a single cycle.

Cloaca often pauses for only ≈20 cycles for a GC pass,

and catches ≈50% of all our garbage before tracing.
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Questions?



Break glass in case of emergency



tails [ ] = [ ]
tails (x : xs) = (x : xs) : tails xs

inits xs =
case xs of

[ ] -> [[ ]]
(y : ys) -> xs : inits ( init xs)

segments xs = concatMap tails (inits xs)

mss = maximum . map sum . segments

main = let x = 0 - 50
y = 150

in mss $ enumFromTo x y



e ::= Expressions
e (Application)
| case e of a (Case expression)
| let b in e (Let expression)
| n (Integer)
| x (Variable)
| ⊗ (Primitive Op)
| f (Function)
| K (Constructor)

a ::= K x→ e Case alternative
b ::= x 7→ e Let binding
d ::= f x = e Function definition



Heron

noun [ C ]

/”her. en/

A processor for lazy functional languages.

Performs beta reduction in one clock cycle via multiple,

wide, multi-ported memories.
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GC wall-clock overhead
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Total GC wall-clock pause
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