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Cloaca

noun [ C ]
[kloh-ah-kub/

The syctem responsible for all
the wagste generated by a heron
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Challenges for concurrent coftware

implementation ?

Expect 21% median clowdown for nofib!



1) Allocation depends on GC state

Stop-the-world GC ve Concurrent GC
Function allsc (app): Function alloc (app):
heap[hp] <— app if allocBarrier(gcPhace, hp)
hp++ then
| tag hp ac Marked
else

| tag hp ac Unmarked
heap[bp] <— app
| hp++




2) Mon-moving GC needs complex allocation

Stop-the-world GC ve Concurrent GC
Function alloc (app): Function alloc (app):
heap[hp] <— app a4—— pop from freelist
hp++ if allocBarrier(gcPhace, a)
then
| tag a ac Marked
elce
| tag a ac Unmarked
heap[a] <— app




3) Prevent graph updates from destroying edgec

Stop-the-world GC ve Concurrent GC
Function update (nf, 2): Function update (nf, 2):
| heap[a] «— wf if updateBarrier(scPhase) then
x <— heap[a]

forall y in xc child pointers do
| remember y for marking

B Aeap[/z\] — nf



Additional hoardwore-enabled optimications




Heron'e existing dynamic update avoidance eystem...

Function unwind (a, chared):
data Atom

[ Var Shared Int if chared and not NF then
[ Arg Shared Int | push a onto update ctack




Heron'e existing dynamic update avoidance eystem...

Function unwind (a, chared):

data Atom
[ Var Shared Int if chared and not NF then
[ Arg Shared Int | push a onto update ctack
if not chared then
B | dealloc a

e 1€ JUSt One-bit reference counting with a hat on.
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Reduction Core Memory Management

" Mutation
h—(” = FIFo)
bble
| Bubbl Peg X_
Requect .
)

MNext frees

RAM
(read-first mode)

Reg

data GC Node
= Freelist Addr
| Worklict Addr
| Marked

| Unmarked




Reduction Core

write a x = do

Memory Management

y < readMem a

Mutation
Bubble
Requect

L MNext frees

Heap

writeMem a x

pure y

RAM
d-first mode,

data GC Node
= Freelist Addr
| Worklist Addr
| Marked

| Unmarked

|
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Peak GHC working set (KB) ~ GHC Allocations (MB) (o€

Adjoxo 97 3017 72
Braun 96 0 26
Cichelli 52 41 123
Clausify 77 369 69
Countdown 96 59 62
Knuthbendix 105 54 329
Mate 137 930 293
Mes 46 359 13
Ordlist 96 784 28
Permsort 96 2320 10
Queens 55 1038 25
Queens2 47 1084 20
Sumpuz 98 1293 72
Taut 47 236 37

While 96 264 &7



Peak GHC working set (KB) — GHC Allocations (MB) (o€

Adjoxo 97 301 72
Braun 46 0 26
Cichelli 52 41 123
Clausify 77 364 69
Countdown 96 59 62
Knuthbendix 105 54 329
Mate 137 930 293
Mes 46 359 13
Ordlist 96 7849 28
Permsort 96 2320 10
Queens 55 1038 25
Queens2 47 1089 20
Sumpuz 98 1293 72
Taut 47 236 37
While 96 269 597
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Concurrent tracing GC — high throughpot and low latency?

Ctock procecsors + coftware ctruggle to maintain throughput.

Write-barriers and friende are hard.

Custom hardware with dual-port read-firet memories

can handle them in a single cycle.

Cloaca. often pauses for only =20 cycles for a GC pass,
and catchee 2 50% of all our garbage before tracing.



Questione?




Break glass in case of emergency




tails [ ] =[]
tails (x : xs) = (x: xs) : tails xs

inits xs =
case xs of

[ ] > [ ]]

(y : ys) ->xs : inits (init xs)

segments xs = concatMap tails (inits xs)

mss = maximum . map sum . segments

main = let x = 0 - 50
y = 150
in mss $§ enumFromTo x y



= Expressions

E (Application)

| cace e of @ (Case expression)

| let 6 in e (Let expression)

[ (Integer)

| (Variable)

| ® (Primitive Op)

| £ (Function)

| € (Constructor)
n=Kx—>e Case alternative

t= x> e Let binding
di=fx=c¢ Function definition



Heron

woun [ C]
[hersn/

A processor for lazy functional languages.
Performs beta redvction in one clock cycle via multiple,

wide, multi-ported memoriec.
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Functione Heap
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Update Reduction - 5x 18 é, Reduction
Stack Logic 5x 18 b Stack
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Reference counting

(Azg reclamation

Deferred reference counting

Mark-and-cweep
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Lazy reclomation Copying

Deferred reference counting Generational
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