C’/oaca.

A Concurrent Hardware Garbage Collector for Non-ctrict Functional [anguages

Craig Ramsay & Rob Stewart

September 2024

Heriot-Watt University

Hardware for FP
Software for Concurrent GC

Can Programming Be Liberated trom the von 19727
Neumann Style? A Functional Style and Its
1960 Algebra of Programs
Recursive Functions of Symbolic Expressions John Backus
and Their Computation by Machine, Part I f
John McCarthy, Massachusetts Institute of Technology, Cambridge,
BWM 1991
a concrete machine for graph reduction
7 7 ?O Tennart Augustsson
Real-Time Garbage Collection on General-Purpose
Machines
Taiichi Yuasa 2012
Reseoeh Intiute for Mothemotol Scienes, Koo Universie, Kyoto, Jpum Reduceron reconfigured and re-evaluated
l MATTHEW NAYLOR and COLIN RUNCIMAN
2020 Alligator Collector: A Latency-Optimized Garbage l
Collector for F ional Pre ing L
e Gamas e Dtz Heron: Modern Hardware Graph Reduction 2024
Craig Ramsay Robert Stewart

Software for Concurrent GC

Hardware for FP

1960

17990

2020

Recursive Functions of Sy mboh(Expressions

and Their Com

John McCarthy, Massad

wide memories and complex ctack mutations

Widen von MNeumann bottleneck with

\

Real-Time Garbage Collection on General-Purpose
Machines

Taiichi Yuasa
Reseurch Insisute for Mathemoricul Sciences, Kyoto Universiy, Ksoto, Japan

l

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari Laura Dietz

Can Pr¢ ogrammmg Be Liberated from the von
tyle? A Fi 1 Style and Its

BWM
a concrete machine for graph reduction

Algebra of Progmms

John Backus

Lennart Augnstsson

|

Reduceron reconfigured and re-evaluated

MATTHEW NAYLOR and COLIN RUNCIMAN

L

Heron: Modern Hardware Graph Reduction

Craig Ramsay Robert Stewart

19727

1991

2012

2024

Software for Concurrent GC

1960
Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I
John McCarthy, Massachusetts Institute of Technology, Cambridge,
1990 et .
Real-Time C on G I-Purpose
Machines
Taiichi Yuasa
Rescurch Imtiate for Mothematica! Scences, Ksoto Universits, Kyoto. Japun

Hardware for FP

Mean 0.6 hand-reductions per cycle
2020 Alligator Collector
Collector for Func|.

Ben Gamari

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

Backus

Jobn
BWM
a concrete machine for graph reduction

Tennart Augustsson

)

Reduceron reconfigured and re-evaluated

MATTHEW NAYLOR and COLIN RUNCIMAN

[

Heron: Modern Hardware Graph Reduction

Craig Ramsay Robert Stewart

19727

7791

2012

20249

Software for Concurrent GC

1960

1790

2020

Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part T

John McCarthy, Massachusetts Institute of Technology, Cambridge,

{

Real-Time Garbage Collection on General-Purpose
Machines

Hardware for FP

Taiichi Yuasa
Alligator Collecto

Collector for Funcj. -

Ben Gamari

Mean 0.6 hand-reductions per cycle
x5 better than GHU‘ per cycle

_

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
BWM
a concrete machine for graph reduction

Lennart Augustsson

)

Reduceron reconfigured and re-evaluated

MATTHEW NAYLOR and COLIN RUNCIMAN

)

Heron: Modern Hardware Graph Reduction

Craig Ramsay Robert Stewart

19727

1991

2012

2029

Software for Concurrent GC

1960

Recursive Functions of Symbolic Expr
and Their Computation by Machine, Part I

John McCarthy, Massachusetts Institute of Technology, Cambridge,

17790

Real-Time Garbage Collection on General-Purpose

Machines

Taiichi Yuasa

Rescurch Instiute for Mathematiol Sciences, Kyoto Univer

2020 Alligator Collectof:

Collector for Fund

Ben Gamari

!

]

ions

Hardware for FP

Mean 0.6 hand-reductions per cycle
x5 better than GHC' per cycle
..but a ting Heron is <200 MHz

ll

Can Programming Be Liberated trom the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
BWM
a concrete machine for graph reduction

Tennart Angustsson

!

Reduceron reconfigured and re-evaluated

MATTHEW NAYLOR and COLIN RUNCIMAN

i

Heron: Modern Hardware Graph Reduction

Craig Ramsay Robert Stewart

19727

1991

2012

2024

Software for Concurrent GC

Hardware for FP

1960

1790

2020

Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I

John McCarthy, Massachusetts Institute of Technology, Cambridge,

|

Real-Time Garbage Collection on General-Purpose
Machines

Taiichi Yuasa
Research Instinute o Mathematica! Sciences. Kyoto Universicv. Ksoto. Japen

[

Alligator Collector: A Latency opmmzed Garbage
Collector for Functi

Ben Gamari Laura Dietz

Can Programmmg Be Liberated from the von
tyle? ional Style and Its

Algebra of P¥og:ams

Joha Backus

“On thece [von Nevmann ctyle] machines,

ph reduction

real-time garbage collection inevitably causes

come overhead on the overall execution”

¥

Reduceron reconfigured and re-evaluated

MATTHEW NAYLOR and COLIN RUNCIMAN

!

Heron: Modern Hardware Graph Reduction

Craig Ramsay Robert Stewart

19727

1991

2012

2024

Software for Concurrent GC

Hardware for FP

1960

1790

2020

Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I

John McCarthy, Massachusetts Institute of Technology, Cambridge,

I

Real-Time Garbage Collection on General-Purpose
Machines

Taiichi Yuasa

Research Insinue for Mathemstice Sciences, Kyoto Universts, Kyoto, Japn

|

Alligator Collector: A Latency-Optimized Garbage
Collector for F ional P ing L

Ben Gamari Laura Dietz

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
BWM
a concrete machine for graph reduction

Tennart Augustssan

!

Reduceron reconfigured and re-evaluated

“The nofib cases are quite mixed [.] most |FUNTMAN

tecte clow down, with a median of +21%”

Heron: Modern Hardware Graph Reduction

Craig Ramsay Robert Stewart

19727

7791

2012

20249

Hardware for FP
Software for Concurrent GC

Can Pro ing Be Liberated from the von

Neumare Style? & Functional Style and Its 1927
Algebra of Programs

John Backus

1960
Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I
John McCarthy, Massachusetts Institute
BWM 1991
4chine for graph reduction
nart Augnstsson
7710 Real-Time Garbage Collection on
Machines
Taiichi Yuasa [| 2012
e, pnfigured and re-evaluated

AYLOR and COLIN RUNCIMAN

\

\ Heron: Modern Hardware Graph Reduction 2024

Craig Ramsay Robert Stewart

2020 Alligator Coll A Latency-Optimized Garbage
Collector for F ional P ing L

Ben Gamari Laura Dietz

Cloaca

noun [C]
[kloh-ah-kub/

The syctem responsible for all
the wagste generated by a heron

Tracing example

Stack
(c graph rootc)

Heap

Stack

Heap
[gmph rootc)

Root ID

Stack
[gmph rootc)

Vyj

Heap

I

Marking

Stack
(9ra,bh rootc)

Heap

Marking

Stack
(graph rootc)

Heap

§' weep/‘ug

Stack
(gra,bh rootc)

™

Heap

Sweeping

Stack
(gra,bh rootc)

Heap

—

— —1 1 N

§’ weepmg

Stack
(graph roots)

Heap

§' weep/‘ug

Stack
(gra,bh rootc)
Heap

e ———

_—

o

§’ weep/‘mg

Challenges for concurrent coftware

implementation ?

Expect 21% median clowdown for nofib!

1) Allocation depends on GC state

Stop-the-world GC ve Concurrent GC
Function allsc (app): Function alloc (app):
heap[hp] <— app if allocBarrier(gcPhace, hp)
hp++ then
| tag hp ac Marked
else

| tag hp ac Unmarked
heap[bp] <— app
| hp++

2) Mon-moving GC needs complex allocation

Stop-the-world GC ve Concurrent GC
Function alloc (app): Function alloc (app):
heap[hp] <— app a4—— pop from freelist
hp++ if allocBarrier(gcPhace, a)
then
| tag a ac Marked
elce
| tag a ac Unmarked
heap[a] <— app

3) Prevent graph updates from destroying edgec

Stop-the-world GC ve Concurrent GC
Function update (nf, 2): Function update (nf, 2):
| heap[a] «— wf if updateBarrier(scPhase) then
x <— heap[a]

forall y in xc child pointers do
| remember y for marking

B Aeap[/z\] — nf

Additional hoardwore-enabled optimications

Heron'e existing dynamic update avoidance eystem...

Function unwind (a, chared):
data Atom

[Var Shared Int if chared and not NF then
[Arg Shared Int | push a onto update ctack

Heron'e existing dynamic update avoidance eystem...

Function unwind (a, chared):

data Atom
[Var Shared Int if chared and not NF then
[Arg Shared Int | push a onto update ctack
if not chared then
B | dealloc a

e 1€ JUSt One-bit reference counting with a hat on.

Architecture

Reduction Core Memory Management

?% Mutation { —
Bubble - :
Requect

m MNext frees

Heap
I——

Reduction Core Memory Management

" Mutation
h—(” = FIFo)
bble
| Bubbl Peg X_
Requect .
)

MNext frees

RAM
(read-first mode)

Reg

data GC Node
= Freelist Addr
| Worklict Addr
| Marked

| Unmarked

Reduction Core

write a x = do

Memory Management

y < readMem a

Mutation
Bubble
Requect

L MNext frees

Heap

writeMem a x

pure y

RAM
d-first mode,

data GC Node
= Freelist Addr
| Worklist Addr
| Marked

| Unmarked

|

time

Mutator
State

time

Idle

Running

E ———

Root ID

Euhm‘ng ”

—
R220 cycles

Mutator
State

time

Idle

Running

e

Root ID

Running ”

Mark

,Qanm'ng

S anless heap f'«//z

—

R220 eycles

Mutator
State

time

Idle

Running

Root ID

o ' |

Tee———

—
R220 eycles

Mark

,Qanm'ng

Sweep

,eanm'ng

[;/ers' heap f'«/f

!un/ers’ heap f“//E

Recults

Peak GHC working set (KB) ~ GHC Allocations (MB) (o€

Adjoxo 97 3017 72
Braun 96 0 26
Cichelli 52 41 123
Clausify 77 369 69
Countdown 96 59 62
Knuthbendix 105 54 329
Mate 137 930 293
Mes 46 359 13
Ordlist 96 784 28
Permsort 96 2320 10
Queens 55 1038 25
Queens2 47 1084 20
Sumpuz 98 1293 72
Taut 47 236 37

While 96 264 &7

Peak GHC working set (KB) — GHC Allocations (MB) (o€

Adjoxo 97 301 72
Braun 46 0 26
Cichelli 52 41 123
Clausify 77 364 69
Countdown 96 59 62
Knuthbendix 105 54 329
Mate 137 930 293
Mes 46 359 13
Ordlist 96 7849 28
Permsort 96 2320 10
Queens 55 1038 25
Queens2 47 1089 20
Sumpuz 98 1293 72
Taut 47 236 37
While 96 269 597

Adjoxo
Braun
Cichelli
Clausify
Countdown
Knuthbendix
Mate

Mes
Ordlist
Permsort
Queens
Queens2
Sumpuz
Taut

While

GHC Allocations (MB) (oC
301 72
a 26

91 123
369 67
59 62
59 329
430 293
359 13
789 28
2320 70
1038 25
1089 20
1293 72
236 37
264 57

Max 6C pause (<)

GC worst-case pause

GHC Heron
400 ,F 7 1700
J: ’//’ 50
300 | -
I 3 i P
b 60 -
X
200 | %
E 40
3
700 4 I
20
] 7 | e SIS —t a —2-e o W -EEAARA)-S—R9=0
10 100 10 100
Heap size / Peak working set Heap size / Peak working set
—®— adjoxo —M— braun & cichelli clausify —@— countdown —&— knuthbendix —&— mate —@— mss

—4— ordlist —>— permeort < queens queens? —— Sumpuz

—A— taut —o— while

%6C

30

20

170

GC wall-clock sverhead

GHC Heron
= Ey
n
o
2
o “
sy
O
R
1
L T Eegpeey 0B ARG~
10 100 10 100
Heap size / Peak working set Heap size / Peak working set
—®— adjoxo —M— braun & cichelli clausify —@— countdown —&— knuthbendix —&— mate —@— mss

—4— ordlist —>— permeort < queens queens2 —g— Sumpuz —A— taut —o— while

Concurrent tracing GC — high throughpot and low latency?

Concurrent tracing GC — high throughpot and low latency?

Ctock procecsors + coftware ctruggle to maintain throughput.

Write-barriers and friende are hard.

Concurrent tracing GC — high throughpot and low latency?

Ctock procecsors + coftware ctruggle to maintain throughput.

Write-barriers and friende are hard.

Custom hardware with dual-port read-firet memories

can handle them in a single cycle.

Concurrent tracing GC — high throughpot and low latency?

Ctock procecsors + coftware ctruggle to maintain throughput.

Write-barriers and friende are hard.

Custom hardware with dual-port read-firet memories

can handle them in a single cycle.

Cloaca. often pauses for only =20 cycles for a GC pass,

Concurrent tracing GC — high throughpot and low latency?

Ctock procecsors + coftware ctruggle to maintain throughput.

Write-barriers and friende are hard.

Custom hardware with dual-port read-firet memories

can handle them in a single cycle.

Cloaca. often pauses for only =20 cycles for a GC pass,
and catchee 2 50% of all our garbage before tracing.

Questione?

Break glass in case of emergency

tails [] =[]
tails (x : xs) = (x: xs) : tails xs

inits xs =
case xs of

[] > []]

(y : ys) ->xs : inits (init xs)

segments xs = concatMap tails (inits xs)

mss = maximum . map sum . segments

main = let x = 0 - 50
y = 150
in mss $§ enumFromTo x y

= Expressions

E (Application)

| cace e of @ (Case expression)

| let 6 in e (Let expression)

[(Integer)

| (Variable)

| ® (Primitive Op)

| £ (Function)

| € (Constructor)
n=Kx—>e Case alternative

t= x> e Let binding
di=fx=c¢ Function definition

Heron

woun [C]
[hersn/

A processor for lazy functional languages.
Performs beta redvction in one clock cycle via multiple,

wide, multi-ported memoriec.

Functione Heap

Reduction
Stack

Cace Prim
Stack Stack

Functione Heap

Update
Stack

Reduction
Stack

P

Cace Prim.
Stack Stack

Functione Hea,b

322& 56 /ﬁé b

Update Reduction ~ Ex 185 Peduction
— : ?
gtACé 609"0 §x18 b gtacé

/N

Cace Prim
Stack Stack

Functione Heap

zzzx 56 /\/9\5 b

Update Reduction - 5x 18 é, Reduction
Stack Logic 5x 18 b Stack
Cace Prim

Stack Stack

Reference counting

(Azg reclamation

Deferred reference counting

Mark-and-cweep

[\

Concurrent

Copying

-

tracing

Generational

Lazy reclomation Copying

Deferred reference counting Generational

Max GC pause (1<)

6C worst-case pause

GHC Reduceron Heron
400 ¢ ; 100 .,
‘ 300 4
i 80+,
300 > > 1!
i S S
- & 200+ 9 60 +
H s g]
200 | N N
NS I
3 3
100 |
100 I I
o T —— a L—rmm a - O J U Rt
10 100 10 100 10 100
Heap size / Peak working set Heap size / Peak working set Heap size / Peak working set
—®— adjoxo —M— braun & cichelli c/au:ff'y —@— countdown —&— knuthbendix —&— mate —@— mss

—4— ordlist —>— permcort < queens queenc? —m— Sumpuz —A— taut —%— while

%6C

Heap size / Peak working set

GC wall-clock sverhead

%6C

Reduceron

170 100

Heap size / Peak working set

Heron

10 100
Heap size / Peak working set

—®— adjoxo —M— braun
—4— ordlict —— permeort

A

4

cichelli clausify —@— countdown
queens queens2 —li— Sumpuz

—&— bnuthbendix —&— mate —@— mss
—A— tout —o— while

Total 6C wall-clock pavse

7+

3 3

\'Ll

£y

TS o5t

S X

=< 3
o R 4 X & N
Q S Y & 0w
£ F YN0 &y ¢ @ & o ¥ ¢y
N o y O YN & @ & X ¢
» &Yy S R N R
v v S S

X
XN
Q o NN

¥ X
e & b

lo GHC (Intel i7-1250() — power-caver @ 22 6/-/2)' 0 GHC (Tntel i2-1250) — performance @ 4.7 6Hz}| 0 Heron @ 185 MH=

	Tracing example
	Challenges for concurrent software implementation? Expect 21% median slowdown for nofib!
	Additional hardware-enabled optimisations
	Architecture
	Results
	Questions?
	Break glass in case of emergency

