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Objectives

We present a new FIR filter structure for front-end appli-
cations with Xilinx’s RFSoC, addressing:
• The need for inexpensive parallel filters to process

at full RFSoC data rates
• Benefit of zero DSP48E2 usage at the front-end
• Implications of real-world coefficient patterns with

our proposed designs
• The need for modern, functional hardware

description languages to facilitate verifiable,
parameterised designs with such resource savings

Introduction

Below is a simplified view of the FPGA and RF capabilities of
the ZCU111 RFSoC development board. Note in particular:
• Relative scarcity of the DSP48E2 units
• The number and throughput of RF channels (≈ 140 GB/s)
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Many radio/instrumentation applications demand the full spec-
trum or tight Digital Down/Up Converter (DDC/DUC) re-
sponses, justifying a bypass of the hardened DDC/DUCs. The
fabric clock speed is necessarily lower than the RF sampling
clock, so parallel filters are required. Designs making full use of
the device will also require many ADC/DAC channels, amplify-
ing any resource savings achieved with a single filter structure.

An Example MCM block

Below is a Multiple Constant Multiplication (MCM) graph
showing the shifts and adds required to implement an example
coefficient set — the 15 tap half-band filter (fir0) present in
the ZCU111’s DDC, using a modified Hcub algorithm.
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Traditional Implementation

The standard RFSoC filter implementation is a parallel, single-
rate filter (exemplified by the LogiCORE FIR Compiler/Sys-
tem Generator “SSR” blocks). It uses a polyphase structure for
parallelism and systolic FIR subfilters with DSP48E2 blocks.
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Proposed Implementation

We propose a Fast FIR Algorithm (FFA) structure for paral-
lelism, and MCM blocks (using a variant of Hcub) for multi-
plierless transpose subfilters. This can greatly reduce required
multiplications, exploits coefficient symmetry/duplication, and
avoids use of any DSP48E2 blocks.
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Resource Utilisation Results

Nonlinear phase filtering
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x8 Parallel

0 20 40 60 80 100 120 140
0

10

20

30

40

50

Filter taps

x16 Parallel

FFA & MCM CLBs Polyphase & MCM CLBs
SSR CLBs SSR DSPs

Half-band filtering
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x8 Parallel
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Timing Results for x8 Parallelism
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Multiplier Counts Under Symmetry

Although FFA generally reduces the number of multiplications,
the preadder and H0 + H1 response can cause less favourable
performance under coefficient symmetry. We quantify this ef-
fect below for a 2p-parallel filter with 2pN weights.
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Conclusion

We have demonstrated that, in the context of RFSoC applica-
tions, a combination of FFA parallelism and MCM-based sub-
filters can generate area-efficient and high-speed filters. These
filters quite consistently exchange the traditional architecture’s
DSP usage percentage for a smaller percentage of the generic
fabric resources (CLBs) — often under half of the equivalent
DSP usage for nonlinear phase filters. This is ignoring the CLB
“overhead” incurred by the traditional architecture as well —
there are (somewhat extreme) scenarios where our full imple-
mentation has a smaller CLB area than the traditional imple-
mentation’s overhead alone.
There are some interesting edge-cases for small filters with low
parallelism where our polyphase structure with shared MCM
blocks will often outperform an FFA equivalent, due to better
exploitation of coefficient symmetry. Both implementations are
presented here, and are available under open source licenses.
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