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But first, what’s Type Checking?

We’re used to type systems catching simple bugs in code which is
syntactically correct…

char f(int x) {
...
return y;

}
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And Dependent Types…

Let us perform computations during type checking

e.g. the type of an output can depend on the value of an input

…or prove certain properties of a function at compile time
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Applications for generating DSP circuits?



First Steps: FIR filtering…

Worst-case growth
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First Steps: FIR filtering…

Track ranges with Bounded a
(natural number in range [[0,a]])
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Track ranges with Bounded a
(natural number in range [[0,a]])

[[0, b]]
[[0, a]] [[0, a+b]]

add : Bounded a -> Bounded b ->
Bounded (a+b)

add (B x) (B y) = B (x+y)



First Steps: FIR filtering…

Track ranges with Bounded a
(natural number in range [[0,a]])

Nat
[[0, a]] [[0, a×c]]

c

mulConst : Bounded a -> (c: Nat) ->
Bounded (a*c)

mulConst (B x) c = B (x*c)



First Steps: FIR filtering…

What should the output range be in general?

y[k] =
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wi · x[k−i]

|y[k]| = |x[k]|
j−1∑
i=0

wi



First Steps: FIR filtering…

What should the output range be in general?

y[k] =
j−1∑
i=0

wi · x[k−i]

|y[k]| = |x[k]|
j−1∑
i=0

wi



First Steps: FIR filtering…

Translating our equation to a useful type:

|y[k]| = |x[k]|
j−1∑
i=0

wi



First Steps: FIR filtering…

Translating our equation to a useful type:

|y[k]| = |x[k]|
j−1∑
i=0

wi

dotProd : (ws : Vect j Nat) ->
Vect j (Bounded n) ->
Bounded (n * sum ws)

dotProd ws xs = ...?



First Steps: FIR filtering…

Translating our equation to a useful type:

|y[k]| = |x[k]|
j−1∑
i=0

wi

dotProd : (ws : Vect j Nat) ->
Vect j (Bounded n) ->
Bounded (n * sum ws)

dotProd {j=Z} _ _ = zeros
dotProd {j=S l} {n} (w :: ws) (x :: xs) =
let y = add (mulConst x w) (dotProd ws xs)
in rewrite dotProdDistrib n w l ws in y



What do we gain from this?

fir : (ws : Vect j Nat) ->
Stream (Bounded n) ->
Stream (Bounded (n * sum ws))

• Expressed our intent (for wordlengths) precisely

• A contract between fir’s dev and its user…
• Mechanically checked by the type checker
• Ensuring wordlength is theoretical minimum
• For all parameter sets, not just one instance
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…And what happens when things go wrong?

• If the output range is incorrect for any set of parameters, the
whole function won’t compile (type error)

• …Probably indicates arithmetic mistake or “off-by-one”

• Might always give correct wordlength but via a different
expression (not n * sum ws).

Dev must prove equivalence to type checker

• Bad faith implementation would just resize…
We could encode arithmetic meaning with same tools, not just

wordlengths.
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Going Further: CIC pruning…

Without Hogenauer pruning
(R = 8, N = 3 and M = 1)

+

y[k]

z−1z−1

+

z−1

↓8 +

z−1

+

z−1

+

z−1

+

Bmax

x[k]
Bin

Bmax

− − −

+ + +



Going Further: CIC pruning…

Bj =
⌊
− log2 Fj + log2 σT2N+1

+
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where Fj is the variance error for the jth stage, σT2N+1
is the total

variance at the output due to truncation, N is the number of stages.
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Note that the first two terms have complicated definitions of their
own, including cases, sums, exponentials, and binomial coefficients.



Going Further: CIC pruning…

parameters (r, n, m, b_in, b_out : Nat)

cicStage : (j : Nat) ->
Stream (Unsigned (hogenauer j )) ->
Stream (Unsigned (hogenauer (j+1)))

cicStage = ...?



Application Speculation



Application Speculation

• These examples have type-level wordlengths, but could be…

• Type-level pipeline depth, arithmetic intent1, or maybe even full
z-transform

• Proving equivalence between whole circuit families…
(Enhances peer-reviewed proofs for optimisations — the

implementation is computer-checked too)

• User can do all of this — we just need to support dependent
types

1E. Brady et al, “Constructing correct circuits: Verification of functional aspects of
hardware specifications with dependent types”
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Implementation Speculation

• We have been simulating circuits in Idris, but synthesis from
high-level descriptions is promising.

Inspirations including:

• CλaSH — Compiler for Haskell→ circuits
(Extremely good functional HDL without dependent types)

• Π-ware — EDSL for circuits with dependent types
(Interesting project with extremely low-level circuit descriptions)

• Proto-Quipper-D — Dependently typed tool for quantum circuits
(Great tool from a different domain with similar challenges)
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Thanks! Q&A?


