
On Applications of Dependent Types to
Parameterised Digital Signal Processing Circuits

Craig Ramsay, University of Strathclyde, Scotland
June 25, 2021

github.com/cramsay/
idris_dsp_circuits

github.com/cramsay/idris_dsp_circuits
github.com/cramsay/idris_dsp_circuits

But first, what’s Type Checking?

We’re used to type systems catching simple bugs in code which is
syntactically correct…

char f(int x) {
...
return y;

}

But first, what’s Type Checking?

We’re used to type systems catching simple bugs in code which is
syntactically correct…

char f(int x) {
...
return y;

}

“318/365” by Bjørn Egil Johansen (CC BY-NC 2.0)

And Dependent Types…

Let us perform computations during type checking

e.g. the type of an output can depend on the value of an input

…or prove certain properties of a function at compile time

And Dependent Types…

Let us perform computations during type checking

e.g. the type of an output can depend on the value of an input
…or prove certain properties of a function at compile time

Applications for generating DSP circuits?

First Steps: FIR filtering…

Worst-case growth

14 15 16

z−1 z−1 z−1

w0× 5 w1× 5 w2× 5 w3× 5

x[k] 8 8 8 8

+

13

+

13

+

13

y[k]
13

First Steps: FIR filtering…

Track ranges with Bounded a
(natural number in range [[0,a]])

First Steps: FIR filtering…

Track ranges with Bounded a
(natural number in range [[0,a]])

[[0, b]]
[[0, a]] [[0, a+b]]

add : Bounded a -> Bounded b ->
Bounded (a+b)

add (B x) (B y) = B (x+y)

First Steps: FIR filtering…

Track ranges with Bounded a
(natural number in range [[0,a]])

Nat
[[0, a]] [[0, a×c]]

c

mulConst : Bounded a -> (c: Nat) ->
Bounded (a*c)

mulConst (B x) c = B (x*c)

First Steps: FIR filtering…

What should the output range be in general?

y[k] =
j−1∑
i=0

wi · x[k−i]

|y[k]| = |x[k]|
j−1∑
i=0

wi

First Steps: FIR filtering…

What should the output range be in general?

y[k] =
j−1∑
i=0

wi · x[k−i]

|y[k]| = |x[k]|
j−1∑
i=0

wi

First Steps: FIR filtering…

Translating our equation to a useful type:

|y[k]| = |x[k]|
j−1∑
i=0

wi

First Steps: FIR filtering…

Translating our equation to a useful type:

|y[k]| = |x[k]|
j−1∑
i=0

wi

dotProd : (ws : Vect j Nat) ->
Vect j (Bounded n) ->
Bounded (n * sum ws)

dotProd ws xs = ...?

First Steps: FIR filtering…

Translating our equation to a useful type:

|y[k]| = |x[k]|
j−1∑
i=0

wi

dotProd : (ws : Vect j Nat) ->
Vect j (Bounded n) ->
Bounded (n * sum ws)

dotProd {j=Z} _ _ = zeros
dotProd {j=S l} {n} (w :: ws) (x :: xs) =
let y = add (mulConst x w) (dotProd ws xs)
in rewrite dotProdDistrib n w l ws in y

What do we gain from this?

fir : (ws : Vect j Nat) ->
Stream (Bounded n) ->
Stream (Bounded (n * sum ws))

• Expressed our intent (for wordlengths) precisely

• A contract between fir’s dev and its user…
• Mechanically checked by the type checker
• Ensuring wordlength is theoretical minimum
• For all parameter sets, not just one instance

What do we gain from this?

fir : (ws : Vect j Nat) ->
Stream (Bounded n) ->
Stream (Bounded (n * sum ws))

• Expressed our intent (for wordlengths) precisely
• A contract between fir’s dev and its user…
• Mechanically checked by the type checker

• Ensuring wordlength is theoretical minimum
• For all parameter sets, not just one instance

What do we gain from this?

fir : (ws : Vect j Nat) ->
Stream (Bounded n) ->
Stream (Bounded (n * sum ws))

• Expressed our intent (for wordlengths) precisely
• A contract between fir’s dev and its user…
• Mechanically checked by the type checker
• Ensuring wordlength is theoretical minimum
• For all parameter sets, not just one instance

…And what happens when things go wrong?

• If the output range is incorrect for any set of parameters, the
whole function won’t compile (type error)

• …Probably indicates arithmetic mistake or “off-by-one”

• Might always give correct wordlength but via a different
expression (not n * sum ws).

Dev must prove equivalence to type checker

• Bad faith implementation would just resize…
We could encode arithmetic meaning with same tools, not just

wordlengths.

…And what happens when things go wrong?

• If the output range is incorrect for any set of parameters, the
whole function won’t compile (type error)

• …Probably indicates arithmetic mistake or “off-by-one”

• Might always give correct wordlength but via a different
expression (not n * sum ws).

Dev must prove equivalence to type checker

• Bad faith implementation would just resize…
We could encode arithmetic meaning with same tools, not just

wordlengths.

…And what happens when things go wrong?

• If the output range is incorrect for any set of parameters, the
whole function won’t compile (type error)

• …Probably indicates arithmetic mistake or “off-by-one”

• Might always give correct wordlength but via a different
expression (not n * sum ws).

Dev must prove equivalence to type checker

• Bad faith implementation would just resize…
We could encode arithmetic meaning with same tools, not just

wordlengths.

…And what happens when things go wrong?

• If the output range is incorrect for any set of parameters, the
whole function won’t compile (type error)

• …Probably indicates arithmetic mistake or “off-by-one”

• Might always give correct wordlength but via a different
expression (not n * sum ws).

Dev must prove equivalence to type checker

• Bad faith implementation would just resize…
We could encode arithmetic meaning with same tools, not just

wordlengths.

Going Further: CIC pruning…

Without Hogenauer pruning
(R = 8, N = 3 and M = 1)

+

y[k]

z−1z−1

+

z−1

↓8 +

z−1

+

z−1

+

z−1

+

Bmax

x[k]
Bin

Bmax

− − −

+ + +

Going Further: CIC pruning…

Bj =
⌊
− log2 Fj + log2 σT2N+1

+
1

2
log2

6

N

⌋

where Fj is the variance error for the jth stage, σT2N+1
is the total

variance at the output due to truncation, N is the number of stages.

Going Further: CIC pruning…

Bj =
⌊
− log2 Fj + log2 σT2N+1

+
1

2
log2

6

N

⌋

Note that the first two terms have complicated definitions of their
own, including cases, sums, exponentials, and binomial coefficients.

Going Further: CIC pruning…

parameters (r, n, m, b_in, b_out : Nat)

cicStage : (j : Nat) ->
Stream (Unsigned (hogenauer j)) ->
Stream (Unsigned (hogenauer (j+1)))

cicStage = ...?

Application Speculation

Application Speculation

• These examples have type-level wordlengths, but could be…

• Type-level pipeline depth, arithmetic intent1, or maybe even full
z-transform

• Proving equivalence between whole circuit families…
(Enhances peer-reviewed proofs for optimisations — the

implementation is computer-checked too)

• User can do all of this — we just need to support dependent
types

1E. Brady et al, “Constructing correct circuits: Verification of functional aspects of
hardware specifications with dependent types”

Application Speculation

• These examples have type-level wordlengths, but could be…

• Type-level pipeline depth, arithmetic intent1, or maybe even full
z-transform

• Proving equivalence between whole circuit families…
(Enhances peer-reviewed proofs for optimisations — the

implementation is computer-checked too)

• User can do all of this — we just need to support dependent
types

1E. Brady et al, “Constructing correct circuits: Verification of functional aspects of
hardware specifications with dependent types”

Application Speculation

• These examples have type-level wordlengths, but could be…

• Type-level pipeline depth, arithmetic intent1, or maybe even full
z-transform

• Proving equivalence between whole circuit families…
(Enhances peer-reviewed proofs for optimisations — the

implementation is computer-checked too)

• User can do all of this — we just need to support dependent
types

1E. Brady et al, “Constructing correct circuits: Verification of functional aspects of
hardware specifications with dependent types”

Application Speculation

• These examples have type-level wordlengths, but could be…

• Type-level pipeline depth, arithmetic intent1, or maybe even full
z-transform

• Proving equivalence between whole circuit families…
(Enhances peer-reviewed proofs for optimisations — the

implementation is computer-checked too)

• User can do all of this — we just need to support dependent
types

1E. Brady et al, “Constructing correct circuits: Verification of functional aspects of
hardware specifications with dependent types”

Implementation Speculation

Implementation Speculation

• We have been simulating circuits in Idris, but synthesis from
high-level descriptions is promising.

Inspirations including:

• CλaSH — Compiler for Haskell→ circuits
(Extremely good functional HDL without dependent types)

• Π-ware — EDSL for circuits with dependent types
(Interesting project with extremely low-level circuit descriptions)

• Proto-Quipper-D — Dependently typed tool for quantum circuits
(Great tool from a different domain with similar challenges)

Implementation Speculation

• We have been simulating circuits in Idris, but synthesis from
high-level descriptions is promising.

Inspirations including:

• CλaSH — Compiler for Haskell→ circuits
(Extremely good functional HDL without dependent types)

• Π-ware — EDSL for circuits with dependent types
(Interesting project with extremely low-level circuit descriptions)

• Proto-Quipper-D — Dependently typed tool for quantum circuits
(Great tool from a different domain with similar challenges)

Implementation Speculation

• We have been simulating circuits in Idris, but synthesis from
high-level descriptions is promising.

Inspirations including:

• CλaSH — Compiler for Haskell→ circuits
(Extremely good functional HDL without dependent types)

• Π-ware — EDSL for circuits with dependent types
(Interesting project with extremely low-level circuit descriptions)

• Proto-Quipper-D — Dependently typed tool for quantum circuits
(Great tool from a different domain with similar challenges)

Implementation Speculation

• We have been simulating circuits in Idris, but synthesis from
high-level descriptions is promising.

Inspirations including:

• CλaSH — Compiler for Haskell→ circuits
(Extremely good functional HDL without dependent types)

• Π-ware — EDSL for circuits with dependent types
(Interesting project with extremely low-level circuit descriptions)

• Proto-Quipper-D — Dependently typed tool for quantum circuits
(Great tool from a different domain with similar challenges)

Thanks! Q&A?

