TEMPEST Attacks Against AES

Covertly stealing keys for \$200

Craig Ramsay & Jasper Lohuis

September 22, 2017

Introduction

Your code just pushes electrons around.

Pushing electrons will make magnetic fields.

Y POOL

TEMPEST attacks measure this from a distance.

Yello

TEMPEST attacks measure this from a distance.

Project people

Duncan Lew First intern. Close-by FPGA attacks

Craig Ramsay
Radio-based workflow &
attacking ARM

Jasper Lohuis Cheap shielding, SDRs & antennas

Thanks for feeding us, folks

riscure

Replicating On-Package Attack

Target Device Analogue Radio Recording Preprocessing Analysis

Measuring the field

Measuring the field

Recording -Low-end

Positioning

Positioning WWW.EMCRAFT.COM 0000000

Nice... but still, how do you get a key?

(This part is just existing SCA techniques)

Our trace is related to "power consumption".

$P \approx P_{\text{static}} + P_{\text{noise}} + P_{\text{data}} + P_{\text{operation}}$

 $P \approx P_{\text{static}} + P_{\text{noise}} + \overline{P_{\text{data}}} + P_{\text{operation}}$

Input Byte

0011 0101

0100 0000

1101 1110

Input Byte	(# '1' bits) Power estimate	
0011 0101	4	
0100 0000	1	
1101 1110	6	

I/O Correlation

We can detect data!

Let's find a value using 1 key byte and correlate for all 256 possibilities

32×2^8 guesses (instead of 2^{256})

8192 guesses

(instead of 10⁷⁷)

T Table Correlation

T Table Correlation

Known-key bitwise on T Table lookup

"You know can addresses leak too, right?"

-Riscure, 2017

"Oh... thanks." — Me, 2017

ARM T Table Addresses

```
1508: 4b4a ldr r3, [pc, #296]
150a: 681b ldr r3, [r3, #0]
150c: 0e1b lsrs r3, r3, #24
150e: 4a4d ldr r2, [pc, \#308]
1510: f852 2023 ldr.w r2, [r2, r3, lsl #2]
1514: 4b48
        ldr r3, [pc, #288]
1516: 681b ldr r3, [r3, #0]
1518: 0c1b lsrs r3, r3, #16
151a b2db uxtb r3 r3
151c: 494a ldr r1, [pc, #296]
```

T Table Address Correlation

Known-key bitwise on T Table lookup address \oplus previous address

If the correlation for the *correct* key byte is

biggest, we have an attack.

T Table Attack

Correct key byte...

HD on T Table lookup address (real attack)

T Table Attack

All key byte guesses. We win!

HD on T Table lookup address (real attack)

Repeat this for all 32 key bytes and we have the full key

On-package attack results

Bandwidth vs # traces

Bandwidth vs # traces

Bandwidth vs # traces

Getting some distance

Only need to improve analogue side.

Analysis is the same.

Loop size

Loop size

Amplification and filtering

Small loop distance

Small loops are amazing for under ≈ 5 cm.

Won't get us to 1 m though.

Log-periodic antenna

Log-periodic distance

Example setup

DIY shielding

Real setup

Best setup so far: Key from 30 cm away 400k traces (≈ 50 s recording) Best setup so far:

Key from 30 cm away 400k traces (≈ 50 s recording) $\approx 200 equipment

...and in ideal conditions?

(Thanks, OSPL)

Anechoic Chamber

Conclusion

Conclusion

- · Break OpenSSL's AES with a wire and a \$20 dongle
- · Radio hardware \rightarrow really speeds up attack
- Increase attack distance with new analogue front-ends
 - · First known demonstration

• 1 m works in 5 minutes...

Thanks! Questions?

Backup slides

Selecting an intermediate

Attack XOR with key?

...Can do better!

Attack these lookups.

The non-linearity is useful.

Our setup vs traditional setup

 $f_{\rm S} > 2f_{\rm clk}$

$$f_{\rm S} > 2 \times BW$$

