Functional Hardware Description with Dependent Types
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The motivation (the problem & novelty)
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Typing Abstraction Hosting
Paradigm Discipline Level Style
Traditional HDLs
VHDL Mixed / Strong Typing RTL Stand-Alone
Synchronous
Verilog Mixed / Weak Typing RTL Stand-Alone
Synchronous
SystemVerilog Mixed / Strong Typing RTL Stand-Alone
Synchronous
High-Level Synthesis Languages
Vivado HLS Imperative Strong Typing Behavioural Stand-Alone
Functional HDLs
Lava Functional Stronger Typing + Gate Embedded
Hindley-Milner (Haskell)
ChaSH Functional Stronger Typing + RTL Stand-Alone
Hindley-Milner
IT-ware Functional Gate Embedded
(Adga)
toatie Functional RTL Stand-Alone




Correctness reasoning

hi [

Qmega
Tliware a
[
. gy 7
L\“ A
hi
C\aSH é\\.\\“
| (66
QQ*Q
straction Levg| " K)O@&\O



Correctness reasoning

Chapter 4 contribution
A ChaSH case study of an application
well-suited for EDSLs:

- Motivates first-class staging

- Motivates dependent types for
ergonomics and verification

- Open source low-cost, high-speed,
parallel filters for direct RF sampling



The what (technical discussion)



We explore an HDL that can:

Represent circuits as plain functions Ascribe meaning to synthesisable data types
(needs a stand-alone compiler) (needs a language with dependent types)



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
Similar to Brady’s proposal in
at xbs, xb, bs, yb, cin = " . . o
Laddu (UCons sz xb)y Constructing correct circuits®, 2007.
(ucons ybs yb)
cin .
— case (addBit _ _ _ cin xb yb) of But what about synthesis?
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin Goal is to safely reason about:
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = circult runtime
addu (UCons xbs xb) Vs
(UCons ybs yb) ) )
cin elaboration-time
= case (addBit _ _ _ cin xb yb) of VS
pat cin', lsb )
= (MkBitPair cin' Ish) = typechecking only?
let rec = addu _ _ _ xbs ybs cin"

ans = UCons rec lsb

in

ans



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

addu
Unsigned w x — Unsigned w y — Bit ¢ — . .
Unsigned (S w) (plus ¢ (plus x y)) Chapter 5 contribution
. Further investigation of use cases for dependently typed
bat cn = . . . HDLs, representing circuits as functions:
addu UNil UNil cin
= UCons UNil cin
- Minimal type complexity — enjoy a single language
pat xbs, xb, ybs, yb, cin = for entire circuit lifetime
addu (UCons xbs xb)
(UCOHS ybs yb) - Moderate type complexity — enjoy tracking and
ooan } informing non-functional circuit properties at
= case (addBit _ _ _ cin xb yb) of compile-time
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addU _ _ _ _ xbs ybs cin’ - Full functional verification — Scales well for
ans = UCons rec lsb combinatorial DSP implementations , and shows
in promise for synchronous circuits.

ans



Take a small dependently typed software language, Tinyldris,
then layer our experimental features on top.



Our features:

Erasure
Distinguish typechecking time vs rest

: Chapter 6 contribution
Also applies to data

- toatie: an open source implementation for

Stagi ng combinatorial circuits
Distinguish elaboration vs circuit - Phases of circuit lifetime are the challenge
run-times - Two features used as software optimisation
become necessary for an HDL
Syﬂth esIS - Synthesis can lean on two existing parts of
Derive bit representations for user types dependently typed compilers

Perform elaboration



Explicit use — ()

Used in elaboration or

Relevant o }
circuit run-times

Implicit use — {}
Used only during
typechecking

Implicit use — {}

Erasure

Discard terms only needed during typechecking
We use irrelevance (with ICC*) to direct erasure absolutely

Typechecker prevents path from Irrelevant back to
Relevant

L (I{x: 5} =~ 1) : Type O Mx:Shke:T x & FV(E]e])
D\ {x:S}e): II{x:S} =T




Explicit use — ()

Relevant

Used in elaboration or

circuit run-times

Erasure

After typechecking, ICC*'s extraction performs erasure

Elx] =X (variables)
EM(x:S) —=T] =1I(x:&[S])) — E[T] (Explicit I1)
EM{x:S}—=T] =V(x:&[S]) — £[T]  (mplicit 1)
EMNx:S). €] = A(x: ELSD- €le] (Explicit »)

EMx: S} €] = &[e] (Implicit 2)

Ele u] = &[e] £[u] (Explicit application)
Ele {u}] = E&[e] (Implicit application)



Staging

Plain use  Eval quoted use —![]

Stage 0 Elaboration time

Staging distinguishes elaboration and circuit run-time

Quoted use — [] ' . . .
Ensures elaboration can complete without inspecting any
circuit run-time values

Circuit run-time

Uses the [...], ~, !, and (...) syntax

Plain use | Escaped quoted use — ~ []

Quoted use — []



Staging

Typechecker extensions ensure consistient use

Prevents values known only at circuit run-time from being
used during elaboration time
(M@ S)el n<m
I'mbEx: S

(vary)

Plain use  Escaped quoted use — ~ []



Automatic bit representations

Since we represent circuits as plain functions,
we need a way to synthesise user data types into bit representations

simple Vect : Nat — Type — Type where
VNil : {a : Type} — Vect Z a
VCons : {a : Type} — {k : Nat} — a — Vect k a — Vect (S k) a

Let's reuse the already required unification engine for help



Automatic bit representations

for Brcon[Vect 2 (Bit b)] bg —+ b2
PC(Vect 2 (Bit b)) =
[VCons — {a : Type} — {k : Nat} —
Bit 7 — Vect 1 (Bit ?) — Vect 2 (Bit 7)]

Tag: b
& Do for Broe[Vect 1 (Bit b)] bg + by
PC(Vect 1 (Bit b)}) =
[VCons — {a : Type} — {k : Nat} —
{ Bit ? — Vect 0 (Bit ?) — Vect 1 (Bit 7)]

Tag: by

Tag: bg + Args: bg

Tag: by + Args: by



Normalisation to a netlist

We reuse the normalisation (by evaluation) system also required in typechecking to
normalise down to a tiny language which is circuit-friendly:

N [[X H

X o— Nx]

Ncase x of alt [default ]

Nx]
Nlalt,]

Nlalt,]
NTa]
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Nlan]
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Nlem] = Vm



The future (what's left to do?)




Further work

- Support for synchronous logic

- ..and its place in our correct-by-construction verification

- A fully-typed synthesis scheme

- A formalisation of synthesisability requirements

- A rebase on Idris 2

- Netlist optimisations for vendor tools



The impact (outputs and more contributions)




Outputs

Exploring Zyng MPSoC: With PYNQ and Machine Learning Applications
L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and R. Stewart

Strathclyde Academic Media, Book — 2019

Control and Visualisation of a Software Defined Radio System on the Xilinx RFSoC Platform

Using the PYNQ Framework
J. Goldsmith, C. Ramsay, D. Northcote, K. W. Barlee, L. Crockett, and R. Stewart

|EEE Open Access, Journal paper — 2020

On Applications of Dependent Types to Parameterised Digital Signal Processing Circuits
C. Ramsay, L. Crockett, and R. Stewart

2021 IEEE MWSCAS, Conference paper — 2021

Low-cost, High-speed Parallel FIR Filters for RFSoC Front-Ends Enabled by ChaSH
C. Ramsay, L. Crockett, and R. Stewart

IEEE Asilomar, Conference paper — 2021

Data for toatie— A Hardware Description Language With Dependent Types
C. Ramsay, L. Crockett, and R. Stewart

Self-published, Digital artefact — 2022



HAFLANG
an EPSRC project for the
Hardware Acceleration of

Functional Languagues

haflang.github.io



haflang.github.io

Appendix




Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin =
aday EBEOHS xbs xb) Let's subdue the “noise”
ons ybs yb)
cin
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = What do the types guarantee?
addu (UCons xbs xb)
(UCons ybs yb)
cin What do they not guarantee?
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = Data constructors for synthesisable
addu (UCons xbs xb) B ;
(UCons Jbs yb) types have non-synthesisable
cin arguments!
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —

Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = How do we know which function
addu Eﬂggzz ;Ez ;E; arguments must be applied before the
cin function becomes synthesisable?
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = adduU _ _ _ _ xbs ybs cin'
ans = UCons _ _ _ rec lsb

in

ans



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —

Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= Utons UNIL cin We pattern match on circuit runtime
pat xbs, xb, ybs, yb, cin = values...
addu (UCons xbs xb)
(UCons ybs yb) . .
cin Is this is irrefutably OK? Can elaboration
= case (addBit _ _ - cin xb yb) of complete?
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = adduU _ _ _ _ xbs ybs cin'
ans = UCons _ _ _ rec lsb
in

ans



Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin Goal is to safely reason about:
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = circult runtime
addu (UCons xbs xb) Vs
(UCons ybs yb) ) )
cin elaboration-time
= case (addBit _ _ _ cin xb yb) of VS
pat cin', lsb )
= (MkBitPair cin' Ish) = typechecking only?
let rec = addu _ _ _ xbs ybs cin"

ans = UCons rec lsb

in

ans



Dangers in unsigned binary addition — reprise

-- Unsigned binary addition (in toatie)

addU : (w : Nat) — {x,y,c : Nat} —
( Unsigned w x ) — ( Unsigned wy ) — ( Bit ¢ ) —
( Unsigned (S w) (plus ¢ (plus x vy)) )

pat ¢, cin =
addu 0 {0}

{o
= [ UCons

b {ch [UNIL] [UNiL] cin
{_} {o} {c} UNil ~cin ]
pat w, ¢, xsn, xn, xbs, xb, ysn, yn, vybs, yb, cin =
addU (S w) {_} {_} {c} [ UCons {w} {xsn} {xn} xbs xb ]
[ ucons {w} {ysn} {yn} ybs yb ]
cin
= [ case (addBit {_} {_} {_} ~cin xb yb) of
pat a, b, prf, cin', lIsb
= (MkBitPair {a} {b} {_} {pr } cin' lsh) =
let rec = ~(addU _ {_} {_} {_}[xbs] [ybs] [cin'])
ans = UCons {_} {_} {_} rec lsb
in eqind2 {_} {_} {_}
{prfAddU ¢ xn yn a b xsn ysn prf}
{Ah = Unsigned (S (S w)) h} ans

Data constructors for
synthesisable types have
non-synthesisable
arguments!

How do we know which
function arguments must be
applied before the function

becomes synthesisable?

We pattern match on circuit
runtime values...



Dangers in unsigned binary addition — reprise

-- Unsigned binary addition (in toatie)
addu
( Unsigned w x ) — ( Unsigned w vy )

— ( Bit ¢ ) — Data constructors for
( Unsigned (S w) (plus ¢ (plus x vy)) )

synthesisable types have

pat cin = non-synthesisable

addu [UNIL] [UNiL] cin arguments!
= [ UCons UNil ~cin ] '
bat xbs, xb, ybs, yb, cin = How do we know which
addy [ ucons Xbs xb- ] function arguments must be
[ UCons ybs yb ] ) .
cin applied before the function
= [ case (addBit -cin xb yb) of becomes synthesisable?
pat cin', lsb
= (MkBitPair {a} {b} {_} {prf} cin' Ilsb) =
let rec = ~(addu [xbs] [ybs] [cin']) We pattern match on circuit
ans = UCons rec lsb runtime values
in
ans



Normalisation to a netlist
We reuse the normalisation (by evaluation) system also required in typechecking

Our irrelevance and staging annotations mean we can hopefully normalise down to a tiny
language which is circuit-friendly:

T, O n= Types
Ds 7 Fully applied simple type
a = Argument expressions
X Local variable
| Csa Fully applied simple data constructor
e = Subexpressions
X Local variable
| Gsa Fully applied simple data constructor
| case x of alt [default a] Case with optional default
| w’Cx Projection
alt == Cs X — a Alternatives

gu=AX:7.lety:o — einz Top-level circuit
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