Functional Hardware Description with Dependent Types

"y
. "y v
Craig Ramsay 886 886
888 888 888 dsb 888
888 888 888 Y8P 888
888 888 888 888
November 2023 888 888888 .d88bh. 8888b. 888888 888 .d88b. 888
888 888 d8s" "88b "88b 888 888 d8P Y8b 888
888 888 888 888 .d888888 888 888 88888888 888
H H 888 Y88b. Y88..88P 888 888 Y88b. 888 Y8b. 888
UanerS\ty Of Strathc{yde .e888e “Yyggs "Y88P" “Y8ss8s88 "Y888 888 “Y8888 e888e.

The motivation (the problem & novelty)

UltraRAM DSP48E2s Logic Fabric

Block RAM

0 0
L 1 1 [[1 11
DoOoooooo)
L | 1 [[T [T T |
i | s —
L T T T 1T T T T T

Transceivers

Configurable Logic Block

"i" Programmable Routing

. Switch Matrix

Logic Cells

107

106

106

106

106

—e— Series low-
—e— Series high

T T
end device Virtex UltraScale+

-end device VU19P

XC2000s
XC2018

/

/

Virtex-7 Series
Virtex-1 Series Virtex-4 Series XC7VX1140T
XCV1000 XC4VLX200

N

A/
g
&
S

® Py

< P
S $
~ ~N

% of FPGA design projects

30

20

10

182016 Survey Data
082018 Survey Data
002020 SurveyData

002022 Survey Data []

[w1 H
1 2 3 4 5 >6

Number of non-trivial bug escapes into production

Typing Abstraction Hosting
Paradigm Discipline Level Style
Traditional HDLs
VHDL Mixed / Strong Typing RTL Stand-Alone
Synchronous
Verilog Mixed / Weak Typing RTL Stand-Alone
Synchronous
SystemVerilog Mixed / Strong Typing RTL Stand-Alone
Synchronous
High-Level Synthesis Languages
Vivado HLS Imperative Strong Typing Behavioural Stand-Alone
Functional HDLs
Lava Functional Stronger Typing + Gate Embedded
Hindley-Milner (Haskell)
ChaSH Functional Stronger Typing + RTL Stand-Alone
Hindley-Milner
IT-ware Functional Gate Embedded
(Adga)
toatie Functional RTL Stand-Alone

Correctness reasoning

hi [

Qmega
Tliware a
[
. gy 7
L\“ A
hi
C\aSH é\\.\\“
| (66
QQ*Q
straction Levg| " K)O@&\O

Correctness reasoning

Chapter 4 contribution
A ChaSH case study of an application
well-suited for EDSLs:

- Motivates first-class staging

- Motivates dependent types for
ergonomics and verification

- Open source low-cost, high-speed,
parallel filters for direct RF sampling

The what (technical discussion)

We explore an HDL that can:

Represent circuits as plain functions Ascribe meaning to synthesisable data types
(needs a stand-alone compiler) (needs a language with dependent types)

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
Similar to Brady’s proposal in
at xbs, xb, bs, yb, cin = " . . o
Laddu (UCons sz xb)y Constructing correct circuits®, 2007.
(ucons ybs yb)
cin .
— case (addBit _ _ _ cin xb yb) of But what about synthesis?
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin Goal is to safely reason about:
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = circult runtime
addu (UCons xbs xb) Vs
(UCons ybs yb)))
cin elaboration-time
= case (addBit _ _ _ cin xb yb) of VS
pat cin', lsb)
= (MkBitPair cin' Ish) = typechecking only?
let rec = addu _ _ _ xbs ybs cin"

ans = UCons rec lsb

in

ans

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

addu
Unsigned w x — Unsigned w y — Bit ¢ — . .
Unsigned (S w) (plus ¢ (plus x y)) Chapter 5 contribution
. Further investigation of use cases for dependently typed
bat cn = . . . HDLs, representing circuits as functions:
addu UNil UNil cin
= UCons UNil cin
- Minimal type complexity — enjoy a single language
pat xbs, xb, ybs, yb, cin = for entire circuit lifetime
addu (UCons xbs xb)
(UCOHS ybs yb) - Moderate type complexity — enjoy tracking and
ooan } informing non-functional circuit properties at
= case (addBit _ _ _ cin xb yb) of compile-time
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addU _ _ _ _ xbs ybs cin’ - Full functional verification — Scales well for
ans = UCons rec lsb combinatorial DSP implementations , and shows
in promise for synchronous circuits.

ans

Take a small dependently typed software language, Tinyldris,
then layer our experimental features on top.

Our features:

Erasure
Distinguish typechecking time vs rest

: Chapter 6 contribution
Also applies to data

- toatie: an open source implementation for

Stagi ng combinatorial circuits
Distinguish elaboration vs circuit - Phases of circuit lifetime are the challenge
run-times - Two features used as software optimisation
become necessary for an HDL
Syﬂth esIS - Synthesis can lean on two existing parts of
Derive bit representations for user types dependently typed compilers

Perform elaboration

Explicit use — ()

Used in elaboration or

Relevant o }
circuit run-times

Implicit use — {}
Used only during
typechecking

Implicit use — {}

Erasure

Discard terms only needed during typechecking
We use irrelevance (with ICC*) to direct erasure absolutely

Typechecker prevents path from Irrelevant back to
Relevant

L (I{x: 5} =~ 1) : Type O Mx:Shke:T x & FV(E]e])
D\ {x:S}e): II{x:S} =T

Explicit use — ()

Relevant

Used in elaboration or

circuit run-times

Erasure

After typechecking, ICC*'s extraction performs erasure

Elx] =X (variables)
EM(x:S) —=T] =1I(x:&[S])) — E[T] (Explicit I1)
EM{x:S}—=T] =V(x:&[S]) — £[T] (mplicit 1)
EMNx:S). €] = A(x: ELSD- €le] (Explicit »)

EMx: S} €] = &[e] (Implicit 2)

Ele u] = &[e] £[u] (Explicit application)
Ele {u}] = E&[e] (Implicit application)

Staging

Plain use Eval quoted use —![]

Stage 0 Elaboration time

Staging distinguishes elaboration and circuit run-time

Quoted use — [] ' . . .
Ensures elaboration can complete without inspecting any
circuit run-time values

Circuit run-time

Uses the [...], ~, !, and (...) syntax

Plain use | Escaped quoted use — ~ []

Quoted use — []

Staging

Typechecker extensions ensure consistient use

Prevents values known only at circuit run-time from being
used during elaboration time
(M@ S)el n<m
I'mbEx: S

(vary)

Plain use Escaped quoted use — ~ []

Automatic bit representations

Since we represent circuits as plain functions,
we need a way to synthesise user data types into bit representations

simple Vect : Nat — Type — Type where
VNil : {a : Type} — Vect Z a
VCons : {a : Type} — {k : Nat} — a — Vect k a — Vect (S k) a

Let's reuse the already required unification engine for help

Automatic bit representations

for Brcon[Vect 2 (Bit b)] bg —+ b2
PC(Vect 2 (Bit b)) =
[VCons — {a : Type} — {k : Nat} —
Bit 7 — Vect 1 (Bit ?) — Vect 2 (Bit 7)]

Tag: b
& Do for Broe[Vect 1 (Bit b)] bg + by
PC(Vect 1 (Bit b)}) =
[VCons — {a : Type} — {k : Nat} —
{ Bit ? — Vect 0 (Bit ?) — Vect 1 (Bit 7)]

Tag: by

Tag: bg + Args: bg

Tag: by + Args: by

Normalisation to a netlist

We reuse the normalisation (by evaluation) system also required in typechecking to
normalise down to a tiny language which is circuit-friendly:

N [[X H

X o— Nx]

Ncase x of alt [default]

Nx]
Nlalt,]

Nlalt,]
NTa]

m'—>

Nlan]

A“'-[[Csimple aﬂ

C o—f }
Nla4] -—‘g

NAXT7 . lety:m = einy]

X1

Xy e—

Nlei] == y1

Nle] = yj ———>

Nlem] = Vm

The future (what's left to do?)

Further work

- Support for synchronous logic

- ..and its place in our correct-by-construction verification

- A fully-typed synthesis scheme

- A formalisation of synthesisability requirements

- A rebase on Idris 2

- Netlist optimisations for vendor tools

The impact (outputs and more contributions)

Outputs

Exploring Zyng MPSoC: With PYNQ and Machine Learning Applications
L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and R. Stewart

Strathclyde Academic Media, Book — 2019

Control and Visualisation of a Software Defined Radio System on the Xilinx RFSoC Platform

Using the PYNQ Framework
J. Goldsmith, C. Ramsay, D. Northcote, K. W. Barlee, L. Crockett, and R. Stewart

|EEE Open Access, Journal paper — 2020

On Applications of Dependent Types to Parameterised Digital Signal Processing Circuits
C. Ramsay, L. Crockett, and R. Stewart

2021 IEEE MWSCAS, Conference paper — 2021

Low-cost, High-speed Parallel FIR Filters for RFSoC Front-Ends Enabled by ChaSH
C. Ramsay, L. Crockett, and R. Stewart

IEEE Asilomar, Conference paper — 2021

Data for toatie— A Hardware Description Language With Dependent Types
C. Ramsay, L. Crockett, and R. Stewart

Self-published, Digital artefact — 2022

HAFLANG
an EPSRC project for the
Hardware Acceleration of

Functional Languagues

haflang.github.io

haflang.github.io

Appendix

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin =
aday EBEOHS xbs xb) Let's subdue the “noise”
ons ybs yb)
cin
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = What do the types guarantee?
addu (UCons xbs xb)
(UCons ybs yb)
cin What do they not guarantee?
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = Data constructors for synthesisable
addu (UCons xbs xb) B ;
(UCons Jbs yb) types have non-synthesisable
cin arguments!
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = addu _ _ _ xbs ybs cin"
ans = UCons _ _ _ rec lsb
in

ans

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —

Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = How do we know which function
addu Eﬂggzz ;Ez ;E; arguments must be applied before the
cin function becomes synthesisable?
= case (addBit _ _ _ cin xb yb) of
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = adduU _ _ _ _ xbs ybs cin'
ans = UCons _ _ _ rec lsb

in

ans

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —

Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin
= Utons UNIL cin We pattern match on circuit runtime
pat xbs, xb, ybs, yb, cin = values...
addu (UCons xbs xb)
(UCons ybs yb) . .
cin Is this is irrefutably OK? Can elaboration
= case (addBit _ _ - cin xb yb) of complete?
pat cin', lsb
= (MkBitPair cin' lsh) =
let rec = adduU _ _ _ _ xbs ybs cin'
ans = UCons _ _ _ rec lsb
in

ans

Dangers in unsigned binary addition

-- Unsigned binary addition in simulation

adduU
Unsigned w x — Unsigned w y — Bit ¢ —
Unsigned (S w) (plus ¢ (plus x y))

pat cin =

addu UNil UNil cin Goal is to safely reason about:
= UCons UNil cin
pat xbs, xb, ybs, yb, cin = circult runtime
addu (UCons xbs xb) Vs
(UCons ybs yb)))
cin elaboration-time
= case (addBit _ _ _ cin xb yb) of VS
pat cin', lsb)
= (MkBitPair cin' Ish) = typechecking only?
let rec = addu _ _ _ xbs ybs cin"

ans = UCons rec lsb

in

ans

Dangers in unsigned binary addition — reprise

-- Unsigned binary addition (in toatie)

addU : (w : Nat) — {x,y,c : Nat} —
(Unsigned w x) — (Unsigned wy) — (Bit ¢) —
(Unsigned (S w) (plus ¢ (plus x vy)))

pat ¢, cin =
addu 0 {0}

{o
= [UCons

b {ch [UNIL] [UNiL] cin
{_} {o} {c} UNil ~cin]
pat w, ¢, xsn, xn, xbs, xb, ysn, yn, vybs, yb, cin =
addU (S w) {_} {_} {c} [UCons {w} {xsn} {xn} xbs xb]
[ucons {w} {ysn} {yn} ybs yb]
cin
= [case (addBit {_} {_} {_} ~cin xb yb) of
pat a, b, prf, cin', lIsb
= (MkBitPair {a} {b} {_} {pr } cin' lsh) =
let rec = ~(addU _ {_} {_} {_}[xbs] [ybs] [cin'])
ans = UCons {_} {_} {_} rec lsb
in eqind2 {_} {_} {_}
{prfAddU ¢ xn yn a b xsn ysn prf}
{Ah = Unsigned (S (S w)) h} ans

Data constructors for
synthesisable types have
non-synthesisable
arguments!

How do we know which
function arguments must be
applied before the function

becomes synthesisable?

We pattern match on circuit
runtime values...

Dangers in unsigned binary addition — reprise

-- Unsigned binary addition (in toatie)
addu
(Unsigned w x) — (Unsigned w vy)

— (Bit ¢) — Data constructors for
(Unsigned (S w) (plus ¢ (plus x vy)))

synthesisable types have

pat cin = non-synthesisable

addu [UNIL] [UNiL] cin arguments!
= [UCons UNil ~cin] '
bat xbs, xb, ybs, yb, cin = How do we know which
addy [ucons Xbs xb-] function arguments must be
[UCons ybs yb]) .
cin applied before the function
= [case (addBit -cin xb yb) of becomes synthesisable?
pat cin', lsb
= (MkBitPair {a} {b} {_} {prf} cin' Ilsb) =
let rec = ~(addu [xbs] [ybs] [cin']) We pattern match on circuit
ans = UCons rec lsb runtime values
in
ans

Normalisation to a netlist
We reuse the normalisation (by evaluation) system also required in typechecking

Our irrelevance and staging annotations mean we can hopefully normalise down to a tiny
language which is circuit-friendly:

T, O n= Types
Ds 7 Fully applied simple type
a = Argument expressions
X Local variable
| Csa Fully applied simple data constructor
e = Subexpressions
X Local variable
| Gsa Fully applied simple data constructor
| case x of alt [default a] Case with optional default
| w’Cx Projection
alt == Cs X — a Alternatives

gu=AX:7.lety:o — einz Top-level circuit

	The motivationblack!40(the problem & novelty)
	The whatblack!40(technical discussion)
	The futureblack!40(what's left to do?)
	The impactblack!40(outputs and more contributions)
	Appendix

